
Vol.:(0123456789)

Evolving Systems (2025) 16:82
https://doi.org/10.1007/s12530-025-09713-w

ORIGINAL PAPER

Evolving interval‑based time series clustering for streaming industrial
data

Žiga Stržinar1,2  · Igor Škrjanc2 · Boštjan Pregelj1

Received: 23 December 2024 / Accepted: 12 June 2025 / Published online: 28 June 2025
© The Author(s) 2025

Abstract
Accurate clustering of time series data is crucial for extracting meaningful insights from streaming sensor data in industrial
applications. To address the challenges of dynamic and unlabeled data streams, we introduce Interval ERAL (iERAL), an
enhancement of the Error in Aligned Series (ERAL) framework. iERAL is a time series alignment and averaging method
designed for online analysis, incorporating an interval band to represent variance in the underlying data. We pair iERAL
with an evolving time series clustering algorithm, capable of automatically detecting, adapting to, and merging clusters in
real-time. This evolving approach enables the algorithm to dynamically adjust to new patterns, promote or demote clusters
based on their relevance, and handle data variability with interval-based analysis. Unlike previous methods, our approach
not only computes the time series prototype for each cluster but also provides a variance band for interval-based analysis.
We demonstrate the effectiveness of our method by applying it to line pressure measurements in a real-world industrial set-
ting. The algorithm achieves promising results in clustering unlabeled data streams, highlighting its potential for anomaly
detection and adaptive monitoring of industrial processes in evolving operating conditions.

Keywords  Evolving clustering · Time series clustering · Time series prototype · Unsupervised learning · Industrial
application

1  Introduction

The significance of time series analysis has grown with the
increasing accessibility of sensor data across fields such as
automotive, manufacturing, healthcare, and finance. Unlike
many other types of data, the sequence of observations in
time series data is critical. Consequently, specialized analyti-
cal approaches have been developed to respect this temporal
structure.

Time series analysis encompasses several sub-disciplines,
each addressing specific challenges. The most prominent
include time series forecasting, clustering, and classifica-
tion. Forecasting (Masini et al. 2023) predicts future values
based on historical patterns. Clustering methods (Aghabo-
zorgi et al. 2015; Paparrizos and Gravano 2015) group
similar time series, while classification techniques (Bagnall
et al. 2017; Dau et al. 2018; Abanda et al. 2019) assign time
series to predefined categories. These approaches rely on
algorithms tailored to the complexity and temporal nature
of time-dependent data.

Time series clustering is applied when no labeled exam-
ples are available, and the objective is to identify natural
groupings among time series. This technique has diverse
applications, such as clustering stock market time series to
aid portfolio diversification (Lim and Ong 2021; Shirota and
Murakami 2021) and distinguishing power system events
using clustering methods (Bariya et al. 2021).

Conventional clustering methods often assume access to
a static dataset; however, real-world applications frequently
require handling continuously streaming data. In such cases,
a single-pass, online algorithm offers significant advantages

 *	 Žiga Stržinar
	 ziga.strzinar@ijs.si

	 Igor Škrjanc
	 igor.skrjanc@fe.uni-lj.si

	 Boštjan Pregelj
	 bostjan.pregelj@ijs.si

1	 Department of Systems and Control, “Jožef Stefan” Institute,
Jamova cesta 39, 1000 Ljubljana, Slovenia

2	 Laboratory of Control Systems and Cybernetics, Faculty
of Electrical Engineering, University of Ljubljana, Tržaška
cesta 25, 1000 Ljubljana, Slovenia

http://orcid.org/0000-0003-3796-5167
http://crossmark.crossref.org/dialog/?doi=10.1007/s12530-025-09713-w&domain=pdf

	 Evolving Systems (2025) 16:8282  Page 2 of 17

(Škrjanc et al. 2019; Andonovski et al. 2018; Leite et al.
2020; Antić et al. 2021; Škrjanc et al. 2022, 2018; Blažič
et al. 2014; Singh et al. 2023). Additionally, an evolving
model capable of updating itself as new data arrives, can
adapt to changing data distributions over time.

An evolving time series clustering approach is highly
valuable in manufacturing environments for continuous
monitoring of machine health. As sensor data is collected
in real time, the model can dynamically cluster incom-
ing time series to uncover patterns and identify anomalies
before they escalate into equipment failures. By updating
itself, the model remains effective as operating conditions
change, such as by introducing new clusters for emerging
patterns or adjusting existing clusters to reflect altered data
distributions.

The present paper contributes to the time series analysis
literature by proposing Interval ERAL (iERAL), a method
for time series clustering that represents a cluster of time
series using a single series – the cluster’s prototype. Addi-
tionally, the paper introduces an evolving time series clus-
tering algorithm that uses iERAL to process streaming data
in a single pass. The algorithm can automatically determine
the number of clusters required, add new clusters, and merge
existing ones as the data evolves.

The paper is structured as follows. Section 2 presents
related work on time series alignment and averaging meth-
ods, as well as time series clustering methods. Section 3
provides a detailed explanation of ERAL and sERAL, and
introduces iERAL. Additionally, an evolving time series
clustering algorithm, designed for use with iERAL, is
described. Section 4 discusses experimental results, includ-
ing a comparison of alignment and averaging methods,
evolving clustering of unlabeled industrial data, and a com-
parison of evolving clustering results with ground truth
labels. Section 5 analyses the results, and Sect. 6 concludes
the paper and outlines future work.

2 � Related work

A crucial component of many clustering algorithms is the
calculation of a cluster prototype. Prototypes, or centroids,
are representatives of clusters used in methods such as
K-Means, K-Medoids, and Fuzzy C-Means. In time series
clustering, the prototype is a time series that characterizes
the cluster. Prototypes facilitate further analysis, including
classification, anomaly detection, and visualization. They
also help interpret clusters by revealing average behaviors
or common patterns within the cluster.

2.1 � Alignment and averaging methods

A set of time series analysis methods, known as alignment
and averaging methods (Petitjean et al. 2011; Schultz and
Jain 2018; Liu et al. 2023; Rasines et al. 2023; Morel et al.
2018; Liu et al. 2019; Stržinar et al. 2024), address the chal-
lenge of representing a set of time series. These methods
map a set of time series X = {x1, x2,… , xn} to a single pro-
totype time series.

The prototype time series p represents the set of time
series X and is used for further analysis. Historically, these
methods aimed to find the barycenter of the set using
Dynamic Time Warping (DTW) Berndt and Clifford (1994)
as the distance function. Early methods (Niennattrakul and
Ratanamahatana 2009; Gupta et al. 1996) often performed
poorly (Liu et al. 2023; Petitjean et al. 2011; Niennattrakul
and Ratanamahatana 2007). However, many issues were
alleviated by DTW Barycenter Averaging (DBA) Petitjean
et al. (2011), which has become the standard for time series
averaging. Recent methods primarily aim to improve DBA,
focusing on algorithm speed or prototype quality. Notable
advancements include the Stochastic Subgradient Method
(SSG) Schultz and Jain (2018), ShapeDWA (Liu et al. 2023)
and SoftDTW (Cuturi and Blondel 2017).

All the aforementioned methods are based on Dynamic
Time Warping (DTW), a widely used distance function for
time series. DTW aligns time series of different lengths and
is robust to noise. It has been applied to classification (Dau
et al. 2018; Stržinar et al. 2023), robotics in Rasines et al.
(2023), seismology (Kumar et al. 2022), semiconductor
manufacturing (He et al. 2018). It operates by finding the
optimal alignment between two time series via the path with
the lowest cost in a cost matrix, allowing local stretching and
compressing of time series. While DTW is often criticized
for its computational expense, various optimizations have
been proposed to improve its efficiency (Ratanamahatana
and Keogh 2004), Yi et al. (1998), Kim et al. (2001).

Despite the popularity of DBA, recent research highlights
unintuitive solutions arising from DTW-based methods for
alignment and averaging. For example, Liu et al. (2023);
Rasines et al. (2023); Morel et al. (2018); Liu et al. (2019);
Stržinar et al. (2024) demonstrates several cases where
DTW-based methods fail to produce meaningful prototype
time series, often resulting in artifacts such as phantom pla-
teaus and spikes.

The limitations of DTW-based methods have led to
the development of alternative approaches for alignment
and averaging. One such method is Shape-based Distance
(SBD) Paparrizos and Gravano (2015), which empha-
sizes the overall shape of the time series. Another example
is Soft-DTW, which uses a differentiable approximation
of DTW (Cuturi and Blondel 2017). Both methods have

Evolving Systems (2025) 16:82	 Page 3 of 17  82

demonstrated superior performance compared to DBA in
specific scenarios.

2.2 � ERAL and streaming ERAL

Recently, a method called Error in Aligned Series (ERAL)
Stržinar et al. (2024) was introduced, based on optimal non-
elastic alignment of time series. Applied to an industrial
dataset (Stržinar et al. 2024), the method produced promis-
ing results, also validated using the UCR Archive (Dau et al.
2018). ERAL has been shown to outperform DBA and other
DTW-based methods in speed while avoiding artifacts such
as phantom plateaus or spikes, and capturing the underlying
shape of the data.

ERAL employs an iterative process where a prototype
candidate is repeatedly aligned with the dataset and incre-
mentally adjusted. This process continues until the prototype
converges. An error function called the ERAL score is used
to compute the optimal alignment of each time series in the
dataset and the current prototype candidate. The candidate
is then updated based on the alignment results, with the pro-
cess repeated for each iteration.

While ERAL generates high-quality prototypes, it is
designed for batch processing, requiring the entire dataset
to be processed before producing a prototype. This limita-
tion is impractical in many clustering scenarios, where itera-
tive updates are needed. To address this, Streaming ERAL
(sERAL) Stržinar et al. (2024) was introduced. sERAL pro-
cesses data incrementally, updating the prototype as new
samples arrive. It produces prototypes similar to ERAL
while enabling real-time data processing, making it suit-
able for online clustering applications.

sERAL introduces two internal structures: the Prototype
Shape Vector (PSV) and the Prototype Confidence Vector
(PCV). These structures accumulate information from time
series processed in the past and can be used at any time to
compute the prototype.

ERAL and sERAL form the foundation of our work in
this paper. These methods will be discussed in detail in
Sect. 3.

Table 1 provides a comparison of various alignment and
averaging methods, highlighting their key features and per-
formance differences.

2.3 � Time series clustering

Clustering algorithms are fundamental tools in data analysis,
enabling the exploration of unlabeled data. These algorithms
are particularly useful in time series analysis for identify-
ing patterns or grouping similar time series. Applications
of time series clustering include training of coloborative
robots (Rasines et al. 2023), semiconductor manufacturing
and anomaly detection (He et al. 2018), portfolio diversifica-
tion (Shirota and Murakami 2021).

A common approach to time series clustering is the use of
K-Means or K-Medoids algorithms paired with some time-
series-specific distance measure, for example Dynamic Time
Warping (DTW) Berndt and Clifford (1994) or Move-Split-
Merge (MSM) Stefan et al. (2012). This approach has been
thoroughly explored in Holder et al. (2024). Further, gen-
eral-purpose clustering algorithms, such as DBSCAN can
be used in conjunction with a time series distance measure,
such as DTW, and applied to time series datasets (Schubert
et al. 2017).

A notable specialized time series clustering algorithm
is K-Shape, introduced in Paparrizos and Gravano (2015).
This algorithm clusters time series by their shape, using a
distance function called Shape-based Distance (SBD), which
employs cross-correlation to compare the shapes of two time
series. K-Shape has been applied in various domains, includ-
ing portfolio diversification (Shirota and Murakami 2021)
and energy sector (Bariya et al. 2021). However, K-Shape
has several limitations: it cannot process time series of vary-
ing lengths, operates as a batch algorithm, and cannot handle
data in a single pass. Additionally, prototypes generated by
SBD often exhibit edge artifacts (Stržinar et al. 2024).

To address the batch processing limitation of K-Shape,
K-ShapeStream was developed (Bariya et al. 2021). This
algorithm processes data in a single pass, updating proto-
types incrementally as new samples arrive. However, the
other limitations of K-Shape, such as edge artifacts and

Table 1   Comparison of time series alignment and averaging methods

Method Type Underlying distance Time-warped
prototypes

Key benefit

DBA Petitjean et al. (2011) Batch DTW Yes Optimized for DTW
SBD Paparrizos and Gravano (2015) Batch SBD No No spikes and plateaus
ERAL Stržinar et al. (2024) Batch ERAL score No No spikes and plateaus
sERAL Stržinar et al. (2024) Single-pass ERAL score No Adds single pass to ERAL
iERAL (This work) Single-pass ERAL score No Adds interval band

	 Evolving Systems (2025) 16:8282  Page 4 of 17

inability to handle varying time series lengths, remain
unresolved.

Neither K-Shape nor K-ShapeStream can automatically
determine the number of clusters required to represent the
data. This limitation is common among clustering algo-
rithms and is often addressed by experimenting with varying
user-defined numbers of clusters and selecting the optimal
configuration. However, this approach is impractical for
streaming data, where the number of clusters may dynami-
cally change over time.

Evolving algorithms, which can automatically adjust the
model structure (e.g., the number of clusters), offer a flex-
ible and robust solution. Despite their potential advantages,
these algorithms have not been widely adopted in time series
clustering, possibly due to the computational challenges or
lack of specialized implementations.

In this paper, we present an Evolving Time Series Clus-
tering algorithm capable of detecting the number of clusters,
adding and merging clusters dynamically, and processing all
data in a single pass. This is achieved using the ERAL-based
alignment and averaging method described in Sect. 3.

3 � Material and methods

In time series analysis, warping the time axis is common,
typically achieved using Dynamic Time Warping (DTW) or
other elastic distance functions. However, in certain situa-
tions–such as analyzing data from industrial processes–time
axis warping may not be desirable, since even small devia-
tions in signal shape can indicate a fault, an unintended pro-
cess change, or another anomaly. Elastic approaches may
obscure such deviations, making non-elastic distance func-
tions preferable in these contexts.

Another critical aspect of time series analysis is seg-
menting continuous sensor outputs into discrete segments,
a process known as segmentation. Segmentation is crucial
for analyzing industrial processes, as it determines the level
of detail downstream algorithms can capture. For instance,
fine-grained segmentation may detect simple patterns but
lose the broader context if downstream algorithms lack
memory of prior segments. Conversely, coarse segmenta-
tion might limit process insights. Selecting the appropriate
segmentation level is challenging, especially when segment
boundaries are not clearly defined–such as during gradual
signal changes–making boundary decisions difficult and
potentially unreliable.

These two aspects–non-elastic alignment and segmenta-
tion–motivated the development of Error in Aligned Series
(ERAL) Stržinar et al. (2024). ERAL is designed to mini-
mize excessive warping of time series and provide robust-
ness against non-ideal segmentation.

3.1 � Error in aligned series – ERAL

Error in Aligned Series (ERAL) is an iterative method
designed to compute the prototype of a set of time series.
It optimizes the prototype without excessive warping,
ensuring that the result effectively represents the dataset.

Throughout this work, underlined lowercase letters
(e.g., x, x

j
 ) denote univariate time series composed of sca-

lar elements. Subscripts such as xk refer to the k-th scalar
value in the time series x . Expressions like xk−� indicate
index-shifted access to these scalar values and should not
be interpreted as item separation or as multiple distinct
variables.

Let x and y be time series of lengths N and M, respec-
tively. The lengths of x and y may differ. Unlike some
other methods that require equal-length time series, ERAL
accommodates this difference. The time series are repre-
sented as:

x
�
 is a time series shifted by some � ∈ ℤ , as shown in

Eq. (3). An example is shown in the top plot of Fig. 1, where
y is shifted by � = 7:

No assumptions are made regarding the relative values of
N and M; however, in the following examples, we assume
N > M.

ERAL is an iterative method where, in each iteration, a
candidate prototype is aligned with the dataset. To achieve
this alignment, the ERAL score is calculated for all com-
binations of the current prototype and the time series in
the dataset.

For x and y , the ERAL score is defined as:

(1)x = [x0, x1,… , xN−1]

(2)y = [y0, y1,… , yM−1]

(3)x
�
= [x0−� , x1−� ,… , xN−1−�]

Fig. 1   Calculation of the ERAL score for two time series

Evolving Systems (2025) 16:82	 Page 5 of 17  82

The ERAL score describes the error of aligning two time
series at different lags and is computed for all valid �:

The example in Fig. 1 illustrates the ERAL score for two
time series: x = [4, 4, 4, 4, 4, 4, 4, 5, 6, 5, 2, 2, 3, 4, 4, 4] and
y = [5, 6, 5, 2, 2, 3, 4] . A global minimum is observed at
� = 8 , where the two time series are optimally aligned.

The lag corresponding to the minimum ERAL score is
called the optimal lag �∗:

ERAL uses �∗ to align the prototype candidate with the data-
set, ensuring that the candidate is optimally positioned for
refinement.

In each iteration (indexed by j), a set of H time series
X = {x1, x2,… , xH} is aligned to the current prototype can-
didate pj , resulting in X∗,j = {x1

∗,j
, x2

∗,j
,… , xH

∗,j
} . These

aligned time series are then used to update the prototype:

Figure 2 provides a simplified diagram of the ERAL pro-
cess. The prototype candidate is aligned with the dataset,
and an error vector is computed. The prototype candidate is
adjusted using this error vector, and the process repeats over
several iterations until the prototype converges. For complete
details on ERAL, see Stržinar et al. (2024).

3.2 � Streaming ERAL ‑ sERAL

While prototypes generated by ERAL are of high quality
and avoid the issues seen in DBA, SSG, or other DTW-
based methods, ERAL does not support online processing.
This limitation poses challenges in real-world applications

(4)�x,y(�) = �x,y(�)
−1
√∑

k

(xk − yk−�)
2

(5)𝜈x,y(𝜏) =

⎧
⎪⎨⎪⎩

√
M − �𝜏� if 𝜏 < 0√
N − �𝜏� if 𝜏 > N −M√
M otherwise

(6)� ∈
[
−M + 1, N − 1

]

(7)�∗ = argmin ��x,y(�)

(8)x
∗
= [x0−�∗ , x1−�∗ ,… , xN−1−�∗]

(9)pj+1 = pj + �

H∑
i=1

wi,j ⋅ (xi
∗,j

− pj)

(10)wi = 1∕�xi,p(�
∗)

where data streams continuously and models must update
in real-time. An example is monitoring industrial processes,
where sensor data is collected and analyzed for anomalies in
real time. Streaming ERAL (sERAL) Stržinar et al. (2024),
described here, extends ERAL to support online processing.

With sERAL, two internal structures are introduced: the
Prototype Shape Vector (PSV) and the Prototype Confidence
Vector (PCV). Together, these structures store information
about past time series and can be used to calculate the pro-
totype at any time.

•	 PSV: A vector containing the average shape of all pro-
cessed time series. Each incoming time series is aligned
to the current prototype before updating the PSV. As
new time series arrive, PSV evolves by expanding left
or right to accommodate the aligned input series. The
exact mechanism for calculating PSV will be detailed in
Sect. 3.2.1.

•	 PCV: A vector of the same length as PSV, represent-
ing the proportion of past inputs used for each point in

Fig. 2   Simplified diagram showing the ERAL process

	 Evolving Systems (2025) 16:8282  Page 6 of 17

PSV. This adjustment accounts for varying time series
lengths (e.g., a short sample only updates a portion of
PSV, increasing PCV in that region). PCV also reflects
partial overlaps caused by non-zero alignments.

•	 Prototype: A continuous subset of PSV where PCV
exceeds a certain threshold, which is a hyperparameter

of the model. Based on our experience, a threshold of
50 − 80% is a suitable starting point.

The concept of sERAL is illustrated in Fig. 3. Each incoming
time series is aligned with the current prototype, and the PSV
and PCV are updated accordingly. This process is repeated for
every incoming time series.

3.2.1 � Calculating PSV and PCV

Let PSV in the j-th iteration be rj , and PCV be qj . Similarly,
the prototype is then pj:

ij,min is analogous to k in Eq. (13), and Pj = ij,max − ij,min ,
resulting in:

When a sample xj is passed to sERAL, the ERAL score is
calculated for xj and the prototype from the previous itera-
tion pj−1:

Equations (5) and (6) are used for � and the range of The
resulting ERAL score �xj,pj−1(�) is then used to determine the
optimal alignment:

Let x∗
j
 be xj shifted to align with rj (see Fig. 4). After align-

ing the incoming time series and the existing prototype, PSV
can be updated as defined in Eq. (19).

(11)rj = [rj,0, rj,1,… , rj,Rj−1
]

(12)qj = [qj,0, qj,1,… , qj,Rj−1
]

(13)pj = [rj,k, rj,k+1,… , rj,k+Pj
], where 0 ≤ k ≤ Rj − Pj

(14)ij,min = min{i ∣ qj,i > 𝛼}

(15)ij,max = max{i ∣ qj,i > 𝛼}

(16)pj = [rj,i ∣ ij,min ≤ i ≤ ij,max]

(17)�xj,pj−1(�) = �−1
xj,pj−1

(�)

√∑
k

(xj,k − pj−1,k−�)
2

(18)�∗
x,p

= argmin ��x,p(�)

(19)
rj+1,i =

⎧
⎪⎨⎪⎩

j

j + 1
rj,i +

1

j + 1
x∗
j,i

if 0 ≤ i − �∗
x,p

− ij,min ≤ N (overlap region)

rj,i otherwise

Fig. 3   Diagram illustrating the calculation of the sERAL prototype

Evolving Systems (2025) 16:82	 Page 7 of 17  82

In the overlap regions (see Fig. 4), new input data is consid-
ered, increasing our confidence in the PSV values at those
indices. Consequently, the confidence values expressed by
PCV are updated as follows:

As new data xj is added, it may align such that it extends
beyond the current lengths of rj and qj . In such cases, PSV
and PCV are extended by padding to the left and/or right.
See Fig. 4b.

The newly added elements in PSV (padding) take their val-
ues from the aligned sample, while the newly added ele-
ments in PCV are initialized with 1

j+1
.

3.3 � Interval ERAL ‑ iERAL

The prototypes generated by sERAL are of high quality, gen-
erated in real-time, and avoid the issues seen in DBA, SSG,
or other DTW-based methods. However, a simple exten-
sion presented in this paper may further enhance the utility
of ERAL-based prototyping methods. In this section, we

(20)

qj+1,i =

{
j

j+1
qj,i +

1

j+1
if 0 ≤ i − �∗

x,p
− ij,min ≤ N (overlap region)

j

j+1
qj,i otherwise

(21)len(rj) + N > len(rj+1) > len(rj)

introduce Interval ERAL (iERAL), which extends sERAL
by adding a variance band to the prototype.

The variance band measures the spread of the underlying
data and is calculated in parallel with PSV and PCV.

The benefits of adding the variance band include:

1.	 Improved insight into the underlying data. The vari-
ance band indicates the spread of the data, aiding in
identifying outliers or detecting changes in data distribu-
tion.

2.	 Enhanced distance functions. Information on data dis-
tribution enables the use of interval-based and probabil-
ity-based distance functions. These functions are more
robust to noise and outliers, offering a more accurate
measure of similarity between time series.

3.	 Adaptability to non-stationary data. Many processes
generate non-stationary data, where the distribution
changes over time. The variance band helps quantify
these changes, detect anomalies, and react appropriately.

In sERAL, PSV and PCV retain information about the shape
and alignment of the underlying data. In iERAL, a third
component is introduced: the Prototype Interval Vector
(PIV). PIV is a vector of the same length as PSV and PCV,
containing the standard deviation of the data at each point
in PSV. It is calculated in parallel with PSV and PCV and is
used to compute the variance band.

Fig. 4   Demonstration of x∗
j
 aligned to the prototype pj . If x∗j extends past rj , PSV (as well as PCV and PIV) is extended accordingly

	 Evolving Systems (2025) 16:8282  Page 8 of 17

The prototype is still derived from PSV and PCV, and it
is unaffected by the variance band. This ensures full com-
patibility between iERAL and sERAL. The variance band
serves as an additional component, enabling iERAL’s use in
a broader range of applications.

3.3.1 � Calculating PIV

PSV and PCV are calculated online, necessitating an online
formula for standard deviation to compute PIV. Welford’s
online algorithm (Chan and G.H.G., Leveque, R.J. 1983) is
a widely used method for calculating the standard deviation
of a data stream previously applied in Stržinar et al. (2022);
Škrjanc (2021); Stržinar et al. (2024). It is based on the fol-
lowing formulas:

(22)�n = �n−1 +
xn − �n−1

n

(23)M2,n = M2,n−1 + (xn − �n−1)(xn − �n)

Welford’s algorithm is suitable for calculating the standard
deviation of a stream of scalars (see Fig. 5). However, in our
case, we deal with a stream of time series. We propose an
extension of Welford’s algorithm to calculate the standard
deviation of a stream of time series, as illustrated in Fig. 6.

PSV from Eq. (19) already implements an iterative calcu-
lation of the mean value at each index and can serve as an
alternative to Eq. (22).

Welford’s approach requires storing M2 for each index. To
achieve this, we define m:

Here, mj represents m at the j-th iteration. It has the same
length Rj as r and q in Eqs. (11) and (12).

Equation (23) calculates the sum of squared differences
between the data points and the mean, forming the core of
Welford’s approach. This calculation is repeated for every
element of m:

(24)�n =

√
M2,n

n

(25)mj = [mj,0,mj,1,… ,mj,Rj−1
]

Fig. 5   Welford’s algorithm for
calculating the standard devia-
tion of a stream of scalars

Fig. 6   Evolution of PSV, PCV,
and PIV in iERAL. Each row
represents the state after pro-
cessing a new time series

Evolving Systems (2025) 16:82	 Page 9 of 17  82

Finally, the standard deviation formula (24) is extended to
calculate the standard deviation at each index. In Eq. (24),
the M2 value is divided by the number of samples used to
compute � and M2 . PCV is used to determine the number of
samples at each index:

As shown in Fig. 6, the standard deviation is calculated for
each index of the time series and is not constant throughout
the series.

3.3.2 � PIV initialization problem

In the first row of Fig. 6, the standard deviation band is
not zero. Using Eqs. (26) and (27), the standard deviation
of a single sample would be zero. However, to enable the
use of interval-based distance functions, the band should
be non-zero even for the first sample. We propose initial-
izing the band with the estimated internal noise level of
the first sample.

Several methods exist for estimating the noise level of
a time series. We propose using the standard deviation of
the first derivative of the time series. Let �(⋅) compute the
standard deviation, then:

The derivation showing that �(Δx)∕
√
2 approximates the

noise level is provided in Appendix A.

3.3.3 � Merging with iERAL

In the context of evolving clustering, merging similar clus-
ters is often desirable. This section describes the merging
process for two iERAL clusters.

The first step in aligning two clusters is to compute the
alignment of their prototypes. After the alignment is deter-
mined, the PSV, PCV, and PIV vectors of the two clusters
are aligned accordingly, with padding added where neces-
sary. The two clusters are then merged by:

•	 Weighted averaging of the PSV and PCV vectors.
•	 Summing the two PIV vectors.

(26)

mj+1,i =

{
mj,i + (x∗

j,i
− rj,i)(x

∗
j,i
− rj+1,i) if 0 < i − imin − 𝜏∗

x,p
< N

mj,i otherwise

(27)bj,i =

√
mj,i

rj,i ⋅ (j + 1)

(28)Δx = {x1 − x0, x2 − x1, ..., xN − xN−1}

(29)b0,i =
�(Δx)√

2

The merging procedure is as follows:

1.	 Using Eqs. (14)–(16), obtain the two prototypes p1 and
p2.

2.	 Align the two prototypes to compute the optimal lag:

3.	 Align r1, q1, r2, q2,m1,m2 using �∗
1,2

 . Let superscript ∗
indicate aligned vectors (e.g., r1∗, q1∗ , etc.).

4.	 Compute the combined PSV, PCV, and PIV similarly to
Eqs. (19), (20), and (26):

The above procedure computes rM  , qM  , mM  , and nM , which
define the new merged prototype.

For a detailed discussion on merging PCV and PSV, refer
to Stržinar et al. (2024).

3.3.4 � Availability

Full source code with examples for iERAL is available at
https://​repo.​ijs.​si/​zstrz​inar/​ieral. Additionally, a Python
package for iERAL is available at https://​pypi.​org/​proje​ct/​
ieral/.

3.4 � Evolving time series clustering

In our work (Stržinar et al. 2024, 2024, 2023, 2024), we ana-
lyze data streams from industrial machines. By segmenting
the stream of measurements, a series of time series segments
is obtained. The objective of segmentation is to ensure that

(30)�∗
1,2

= argmin �

(
�−1
1,2

√∑
k

(p1,k − p2,k−�)
2

)

(31)

rM
i
=

⎧⎪⎪⎨⎪⎪⎩

n1

n1 + n2
r1∗
i

+
n2

n1 + n2
r2∗
i

if both r1∗ and r2∗ are defined at i

r1∗
i

if only r1∗ is defined at i

r2∗
i

if only r2∗ is defined at i

(32)

qM
i
=

⎧⎪⎪⎨⎪⎪⎩

n1

n1 + n2
q1∗
i

+
n2

n1 + n2
q2∗
i

if both q1∗ and q2∗ are defined at i

n1

n1 + n2
q1∗
i

if only q1∗ is defined at i

n2

n1 + n2
q2∗
i

if only q2∗ is defined at i

(33)

mM
i
=

⎧⎪⎨⎪⎩

m1∗
i
+ m2∗

i
if both m1 and m2∗ are defined at i

m1∗
i

if only m1 is defined at i

m2∗
i

if only m2∗ is defined at i

(34)nM = n1 + n2

https://repo.ijs.si/zstrzinar/ieral
https://pypi.org/project/ieral/
https://pypi.org/project/ieral/

	 Evolving Systems (2025) 16:8282  Page 10 of 17

each segment represents a single action performed by the
machine. The number of possible actions and their correct
sequence are not known in advance. Applying an evolving
time series clustering algorithm to the sequence of seg-
ments reveals groups of similar actions. Analyzing cluster
assignments provides insights into the machine’s actions,
enabling the detection of erroneous sequences, defective
actuators causing changes in time series signatures, and
other anomalies.

Therefore, we apply the segments to an evolving time
series clustering algorithm. Common clustering algorithms
for time series data, such as K-Shape and K-ShapeStream,
are insufficient for our requirements, as discussed in Sect. 2.

We propose an intuitive yet powerful application of evolv-
ing principles to time series clustering, using iERAL as the
underlying alignment and averaging method.

The requirements of our evolving clustering algorithm
are:

1.	 Single-pass processing. The algorithm must process
data in a single pass, updating the model as new data
arrives.

2.	 Automatic cluster detection. The algorithm must auto-
matically detect the number of clusters needed to repre-
sent the data.

3.	 Support for varying time series lengths.
4.	 Handling temporal shifts. Since segmentation is not

perfect, misalignment of key features may occur. The
algorithm must handle such cases effectively.

5.	 Cluster merging. As data evolves, clusters may need to
merge when they become similar.

6.	 Distinguishing outliers. The algorithm must differenti-
ate between outlier samples and full clusters.

We propose the following algorithm for evolving time
series clustering:

1.	 Use the first sample to initialize the first cluster.
2.	 Estimate the noise level of the first sample and use it to

initialize the variance band of the first cluster.
3.	 For each subsequent sample:

(a)	 Compute the distances between the new sample
and all clusters.

(b)	 If the distance to the closest established cluster is
below a certain threshold, add the sample to the
cluster.

(c)	 Update the PSV, PCV, and PIV vectors of the clus-
ter upon adding the sample.

(d)	 If no established clusters are close enough, check
the outlier cluster distances. If any distances are
below a threshold, add the sample to the outlier
cluster, updating PSV, PCV, and PIV.

(e)	 If the sample is not added to any cluster, establish
a new outlier cluster with the sample, initializing
new PSV, PCV, and PIV vectors. Initialize PIV
with the estimated noise level of the sample.

(f)	 After adding the sample, check the cluster for
merging with other clusters. Merging can occur
between any cluster types (established or outlier).

(g)	 Check clusters for changes in established-outlier
status. Convert an established cluster to an out-
lier cluster if it has too few samples. Convert an
outlier cluster to an established cluster if it has
enough samples. The threshold is set as a percent-
age of the total processed samples, determined by
domain knowledge.

3.4.1 � iERAL‑based distance calculation

As with most machine learning applications, the choice
of the distance function is critical. In time series analysis,
the Euclidean distance has been shown to be problematic
(Fu 2011; Aghabozorgi et al. 2015). Elastic and edit-based
distance measures, such as DTW and TWED, have been
proposed. However, as described in Sect. 2, these methods
have their own limitations. The ERAL score provides a
non-elastic distance measure.

Having expanded ERAL with the variance band, we
propose the use of an interval-based distance function. A
simple interval-based distance can be computed as the pro-
portion of the sample that falls outside the variance band
of the prototype. This proportion can then be corrected
by the overlap factor, similar to the distance presented in
Stržinar et al. (2024).

In summary, the distance function is calculated as:

Here, C is the cluster, and x is the sample. r represents the
PSV of C, and b represents the PIV of C.

3.4.2 � Evolving clustering demonstration

In order to demonstrate the evolving clustering procedure,
Fig. 7 provides a demonstration of clustering as 14 time
series are sequentially processed by the algorithm. Each

(35)d(x,C) = 1 −

∑imin+�+N

i=imin+�
�(ri − bi ≤ xi ≤ ri + bi)

n

Evolving Systems (2025) 16:82	 Page 11 of 17  82

column corresponds to a single input time series and its
effect on the current clustering state.

The top row shows the incoming time series. The evolv-
ing clustering algorithm processes them one at a time. The
first time series is used to initialize the first cluster (see
central part of the figure). The noise estimate as calculated
using Eq. (29) is used to initialize the PIV interval band.
The total number of clusters is 1 (bottom plot of figure).

The second time series is processed (Fig. 7, second
column) by computing the distance to the existing cluster
(second row). The distance is too high (red bar), and a
new cluster is initialized. Again, the PIV interval band is
initialized by Eq. (29).

The third time series also initializes a new cluster, how-
ever, the fourth time series is close enough to the prototype
of the third cluster that Cluster 3 is updated (green bar in
second row).

The process is repeated for all incoming time series.
The second row of Fig. 7 visualizes the distances

between the current sample and all existing clusters. A
green bar indicates assignment to the closest cluster. If all
the bars are red, the distance to the closest cluster exceeds
the threshold, and a new cluster is created.

The central matrix of the demonstrative figure shows
the temporal evolution of up to five clusters, with each
cluster visualized using its current prototype (line) and
the surrounding interval band (shaded area). Clusters are
updated when a new sample is added, or remain unchanged
otherwise.

The bottom plot tracks the total number of clusters over
time, helping to highlight cluster initialization and merging
behavior.

Fig. 7   Demonstration of evolv-
ing clustering for 14 time series
passed to the algorithm. In total
5 clusters are initialized. Each
column represents the process-
ing of a single time series.
First row plots the incoming
samples. Second row depicts
the distances between sample
and all clusters. The central part
demonstrates the evolution of
the 5 clusters. Plot at the bot-
tom shows progression of the
number of clusters

Fig. 8   Comparison of DBA, SBD, ERAL, and iERAL

	 Evolving Systems (2025) 16:8282  Page 12 of 17

4 � Experiment and results

4.1 � Comparison of alignment and averaging
methods

One of the contributions of this paper is iERAL, an align-
ment and averaging method. The performance of iERAL is
illustrated in Fig. 8. The figure shows the prototypes gener-
ated by DBA, SBD, ERAL, and iERAL for six sets of time
series corresponding to six classes of data from (Stržinar
et al. 2024, 2024).

Analyzing DBA, we observe unwanted spikes and pla-
teaus in the prototypes. These artifacts, previously reported
by several researchers (Liu et al. 2023; Rasines et al. 2023;
Morel et al. 2018; Liu et al. 2019; Stržinar et al. 2024), can
be attributed to the use of DTW as the underlying alignment
method.

The rightmost column of Fig. 8 shows SBD prototypes.
Since these are not based on DTW, the plateaus and spikes
observed in DBA are absent. However, some scaling issues
and prototype shortening are evident. Compared to the other
three methods, SBD prototypes appear too short relative to
the underlying data. Although the zero-mean tendency at the
edges, as reported in (Stržinar et al. 2024), is not observed in
this dataset, it is likely to occur in others given the proper-
ties of SBD.

Comparing ERAL and iERAL, we observe similar pro-
totypes; however, iERAL better captures the shape at the
edges. Given the excellent results of ERAL in Stržinar et al.
(2024), iERAL demonstrates comparable performance,
achieved in a single pass of the data. Additionally, the

inclusion of the standard deviation band adds significant
value by capturing data variability.

The confidence band in iERAL is observed to vary in
width, confirming the hypothesis that the standard deviation
of the data is not constant throughout the time series. This
variability underscores the need for a mechanism to accu-
rately capture and represent this characteristic.

4.2 � Evolving clustering of unlabeled industrial data

The ultimate goal of this work is the unsupervised cluster-
ing of a stream of otherwise unlabeled sensor readings from
industrial machines. By segmenting the data in the vicinity

Fig. 9   Evolving clustering of
unlabeled industrial data

Fig. 10   Evolving clustering of unlabeled industrial data–progression
of the number of clusters

Evolving Systems (2025) 16:82	 Page 13 of 17  82

of large drops in the (pressure) signal, a sequence of time
series segments is obtained. These segments are passed
to iERAL, and the results are demonstrated in Fig. 9. The
figure shows the final established clusters–clusters contain-
ing more than 0.5% of all samples passed to the clustering
algorithm.

Observing the established clusters in Fig. 9, we notice
that the clusters are well-separated. Each cluster represents
a distinct shape, and the shapes are consistent within each
cluster. The confidence band clearly envelopes the data with-
out being too wide to obscure the shape. The good sepa-
ration of clusters indicates an effective choice of distance
function–the interval-based approach described in Eq. (35).

In Fig. 10, we observe the progression of the number of
clusters as the data is processed. Established clusters (those
accounting for more than 0.5% of past samples at a given
time) are shown in orange, while outlier clusters are shown
in blue.

The number of established clusters (16) stabilizes early,
after around 400 processed samples. Subsequently, only
minor additions, promotions (outlier to established), demo-
tions (established to outlier), and merges are observed. The
number of outlier clusters is high, but analysis of Fig. 10
shows that this number remained relatively stable during the
first part of the experiment. After processing roughly 900
samples, the number of outlier clusters begins to increase,
likely due to the algorithm detecting new patterns in the
data. These results are consistent with prior studies on this
dataset (Stržinar et al. 2024). This behavior suggests the
algorithm’s capability to detect anomalous machine behav-
ior, marking new patterns as outliers.

4.3 � Comparison of evolving clustering results
and ground truth labels

The industrial dataset used in the previous experiment is also
available in a pre-segmented and labeled format. This ena-
bles a comparison of the unsupervised clustering algorithm

proposed in this paper with ground truth labels. The results
are shown in the confusion matrix in Fig. 11.1

The confusion matrix reveals a strong diagonal, indicat-
ing good performance of the clustering algorithm. The clus-
ters identified correlate strongly with the actual class labels.
The clustering algorithm has also detected several outlier
clusters, which explains why the number of columns in the
confusion matrix is greater than the number of rows (cor-
responding to ground truth labels). As expected, the outlier
clusters are mostly empty.

4.4 � Comparison to other time series clustering
algorithms

To further evaluate the effectiveness of our proposed algo-
rithm, we conducted a comparative study against several
established time series clustering techniques. We compare
the proposed algorithm to K-Shape Paparrizos and Gravano
(2015), K-Means and K-Medoids clustering. We include
results using both Dynamic Time Warping (DTW) Berndt
and Clifford (1994) and Move-Split-Merge (MSM) Stefan
et al. (2012) distances, as suggested in Holder et al. (2024).
Additionally, we include DBSCAN Schubert et al. (2017)
with DTW in our comparison. A Python library for time
series analysis, the AEON toolkit (AEON 2025), also
includes two additional clustering algorithms, which we
include in our comparison: CLARA and CLARANS (Ng
and Han 2002). We also include K-ShapeStream Bariya et al.
(2021) as the streaming implementation of K-Shape.

The experiments were performed on a labeled industrial
dataset, which enabled quantitative evaluation of cluster-
ing quality using the Adjusted Rand Index (ARI) and the
V-score.

The Adjusted Rand Index (ARI) is a measure of simi-
larity between two data clusterings, adjusted for chance. It

Fig. 11   Comparison of evolving
clustering results and ground
truth labels

1  The predicted labels in Fig. 11 have been permuted using the Hun-
garian algorithm to obtain the optimal diagonal. Permuting class
labels in an unsupervised learning algorithm does not affect the valid-
ity of the results.

	 Evolving Systems (2025) 16:8282  Page 14 of 17

evaluates how well the predicted clustering agrees with the
ground truth labels. The ARI ranges from -1 to 1, where 1
indicates perfect agreement, 0 indicates random labeling,
and negative values suggest worse than random agreement.

The V-score is an entropy-based external cluster evalua-
tion metric. It is the harmonic mean of homogeneity (each
cluster contains only members of a single class) and com-
pleteness (all members of a given class are assigned to the
same cluster). It is defined as:

Both homogeneity and completeness are derived from con-
ditional entropy calculations and lie in the range [0, 1],
hence V ∈ [0, 1] . Higher values indicate better clustering
performance.

A summary of the results is presented in Table 2.
Our algorithm outperformed the other tested methods

in both V-score and ARI, even though it was not provided
with prior knowledge of the true number of clusters. In
contrast, the competing algorithms were all initialized
with the true number of clusters. Furthermore, our algo-
rithm operates in a single-pass fashion, a significant
advantage for streaming data applications, whereas the
others, with the exception of K-ShapeStream, are inher-
ently batch algorithms. K-ShapeStream was run in micro-
batch mode with batches of 30 samples.

This combination of strong performance and practical
suitability for evolving data streams underlines the value
of our algorithm in real-world industrial settings, where
prior knowledge of the number of clusters is rarely avail-
able and online processing is often required.

V = 2 ⋅
homogeneity ⋅ completeness

homogeneity + completeness

5 � Discussion

The results shown in Sect. 4 demonstrate the ability of
iERAL so produce meaningful cluster prototypes. In com-
bination with the proposed clustering algorithm clusters
corresponding to the underlying process steps are found.

Due to the single-pass nature of iERAL, it is much
faster when applied to industrial applications where data
is streamed and clusters must be updated in real time.
As shown by the computational complexity analysis, any
batch-processing solution is not suitable. iERAL provides
a suitable alternative.

The prototypes generated by iERAL are similar to
those by ERAL. Both methods outperform DTW-based
methods such as DBA by not introducing spike and pla-
teau artifacts. This is especially important in industrial
applications where slight changes in the shape of the
underlying signal can indicate important faults which
must be diagnosed.

By adding the interval band, iERAL captures not only
the shape but also the variance of the underlying data,
adding a second dimension to any downstream analysis
task.

6 � Conclusion and future work

The key contributions of our paper are twofold: 1) the
introduction of the variance band to the ERAL framework
through iERAL, 2) and the evolving time series clustering
algorithm.

The proposed iERAL method enables single-pass cal-
culation the prototype of a set of time series. The addition
of the variance band, enables additional insights into the
data and improved cluster interpretability.

iERAL combined with the proposed evolving time
series clustering algorithm, enables the analysis of evolv-
ing data streams in real time. Unlike previous methods,
the generated prototypes avoid common artifacts such as
spikes and plateaus. The shape of streaming data is pre-
served by iERAL and the clusters generated by the evolv-
ing clustering algorithm correspond well to the underlying
industrial process.

Our experiments have demonstrated how iERAL and the
clustering algorithm can capture the patterns in streamed
industrial data. The found clusters match the underlying
industrial process steps.

Given the promising results presented in this paper, fur-
ther industrial datasets should be obtained for additional
evaluation of the proposed methods.

Since the distance function is a critical part of any time
series analysis, the work presented here could be expanded

Table 2   Comparison of time series clustering algorithms on the
labeled industrial dataset

Algorithm Distance V-score ARI

Our solution ERAL 0.67 0.39
K-Shape SBD 0.42 0.12
K-ShapeStream SBD 0.44 0.11
K-Means DTW 0.50 0.20
K-Means MSM 0.55 0.23
K-Medoids DTW 0.47 0.17
K-Medoids MSM 0.52 0.23
DBSCAN DTW 0.64 0.22
CLARA​ DTW 0.31 0.06
CLARANS DTW 0.48 0.17

Evolving Systems (2025) 16:82	 Page 15 of 17  82

by further research into interval-based and probabilistic dis-
tance measures.

A noise estimation

In this section we examine the noise estimation proposal
used in Sect. 3.3.2 to initialize the Prototype Inverval Vector.

Let the time series x = {x1, x2,… , xn} be modeled as:

where si represents the smooth underlying signal, and ni rep-
resents zero-mean, independent, and identically distributed
(i.i.d.) noise with E[ni] = 0 and Var(ni) = �2.

The first-order difference of the time series is defined as:

Substituting the model xi = si + ni , we have:

where Δsi = si+1 − si and Δni = ni+1 − ni.
The variance of Δxi is given by:

Since the noise ni is zero-mean ( E[ni] = 0 ) and the smooth
signal is assumed to vary around a local mean ( E[Δsi] = 0 ),
we have:

Thus:

Substituting Δxi = Δsi + Δni , we expand:

Using the linearity of expectation:

Assuming the smooth signal Δsi and noise Δni are independ-
ent, we have:

This reduces the variance expression to:

For the noise term Δni = ni+1 − ni:

(36)xi = si + ni

(37)Δxi = xi+1 − xi

(38)Δxi = (si+1 − si) + (ni+1 − ni)

(39)Δxi = Δsi + Δni

(40)Var(Δxi) = E[(Δxi − E[Δxi])
2]

(41)E[Δxi] = E[Δsi] + E[Δni] = 0

(42)Var(Δxi) = E[(Δxi)
2]

(43)Var(Δxi) = E[(Δsi + Δni)
2]

(44)
E[(Δsi + Δni)

2] = E[(Δsi)
2] + 2E[ΔsiΔni] + E[(Δni)

2]

(45)E[ΔsiΔni] = 0

(46)Var(Δxi) = E[(Δsi)
2] + E[(Δni)

2]

Expanding the square:

Since ni are i.i.d., E[n2
i+1

] = E[n2
i
] = �2 , and E[ni+1ni] = 0 ,

we get:

The term E[(Δsi)2] represents the variance of the smooth
signal differences. For a sufficiently smooth signal, this vari-
ance is small, and we approximate:

Substituting back, we have:

Taking the square root to compute the standard deviation:

Rearranging for � , the noise level is:

Thus, the standard deviation of the noise can be estimated
from the first-order differences of the time series as:

Acknowledgements  This work has been supported by the Slovenian
Research and Innovation Agency research programs P2-0001, P2-0219,
research project L2-4454 abd Horizon Europe project AI REDGIO 5.0
(Grant agreement ID: 101092069).

Author Contributions  Žiga Stržinar: Conceptualization, Data curation,
Formal analysis, Investigation, Methodology, Software, Validation,
Visualization, Writing – original draft. Igor Škrjanc: Conceptualiza-
tion, Funding acquisition, Project administration, Resources, Super-
vision, Validation, Writing – review and editing. Boštjan Pregelj:
Conceptualization, Data curation, Funding acquisition, Project admin-
istration, Resources, Supervision, Validation, Writing – review and
editing.

Data Availability  The industrial dataset used in this paper is available
at https://​data.​mende​ley.​com/​datas​ets/​ypzsw​hhzh9. Key results shown
in this paper can be generated using the source code available at https://​
repo.​ijs.​si/​zstrz​inar/​ieral.

Declarations 

Declaration of Generative AI and AI‑assisted technologies in the writing
process  During the preparation of this work the authors used ChatGPT
in order to improve the readability of individual text paragraphs. After

(47)E[(Δni)
2] = E[(ni+1 − ni)

2]

(48)E[(ni+1 − ni)
2] = E[n2

i+1
] + E[n2

i
] − 2E[ni+1ni]

(49)E[(Δni)
2] = �2 + �2 = 2�2

(50)E[(Δsi)
2] ≈ 0

(51)Var(Δxi) ≈ E[(Δni)
2] = 2�2

(52)std(Δxi) =
√
Var(Δxi) ≈

√
2�

(53)� ≈
std(Δxi)√

2

(54)std(n) ≈
std(diff(x))√

2

https://data.mendeley.com/datasets/ypzswhhzh9
https://repo.ijs.si/zstrzinar/ieral
https://repo.ijs.si/zstrzinar/ieral

	 Evolving Systems (2025) 16:8282  Page 16 of 17

using this tool, the authors reviewed and edited the content as needed
and take full responsibility for the content of the publication.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abanda A, Mori U, Lozano JA (2019) A review on distance based time
series classification. Data Min Knowl Disc 33(2):378–412. https://​
doi.​org/​10.​1007/​s10618-​018-​0596-4

AEON toolkit. https://​www.​aeon-​toolk​it.​org/​en/​stable/. Accessed 21
Mar 2025

Aghabozorgi S, Shirkhorshidi AS, Wah TY (2015) Time-series clus-
tering—a decade review. Inf Syst 53:16–38. https://​doi.​org/​10.​
1016/j.​is.​2015.​04.​007

Andonovski G, Mušič G, Blažič S, Škrjanc I (2018) Evolving model
identification for process monitoring and prediction of non-linear
systems. Eng Appl Artif Intell 68:214–221. https://​doi.​org/​10.​
1016/j.​engap​pai.​2017.​10.​020

Antić M, Zdešar A, Škrjanc I (2021) Depth-image segmentation based
on evolving principles for 3d sensing of structured indoor environ-
ments. Sensors 21(13):4395. https://​doi.​org/​10.​3390/​s2113​4395

Bagnall A, Lines J, Bostrom A, Large J, Keogh E (2017) The great
time series classification bake off: a review and experimental
evaluation of recent algorithmic advances. Data Min Knowl Disc
31(3):606–660. https://​doi.​org/​10.​1007/​s10618-​016-​0483-9

Bariya M, Meier A, Paparrizos J, Franklin MJ (2021) k-shapestream:
probabilistic streaming clustering for electric grid events. In: 2021
IEEE Madrid PowerTech, pp 1– 6 . https://​doi.​org/​10.​1109/​Power​
Tech4​6648.​2021.​94948​30 . IEEE

Berndt DJ, Clifford J (1994) Using dynamic time warping to find pat-
terns in time series. In: Proceedings of the 3rd International con-
ference on knowledge discovery and data mining, pp 359– 370.
AAAI Press

Blažič S, Škrjanc I, Matko D (2014) A robust fuzzy adaptive law for
evolving control systems. Evol Syst 5:3–10. https://​doi.​org/​10.​
1007/​s12530-​013-​9084-7

Chan Tony F, GHG, Leveque RJ (1983) Algorithms for computing
the sample variance: analysis and recommendations. Am Stat
37(3):242–247. https://​doi.​org/​10.​1080/​00031​305.​1983.​10483​115

Cuturi M, Blondel M (2017) Soft-DTW: a differentiable loss function
for time-series. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the
34th International Conference on Machine Learning. Proc Mach
Learn Res 70:894–903 PMLR (https://​proce​edings.​mlr.​press/​v70/​
cutur​i17a.​html)

Dau HA, Bagnall AJ, Kamgar K, Yeh CM, Zhu Y, Gharghabi S, Ratan-
amahatana CA, Keogh EJ (2018) The UCR time series archive.
CoRR abs/1810.07758 (2018) arXiv:​1810.​07758

Dau HA, Keogh E, Kamgar K, Yeh C-CM, Zhu Y, Gharghabi S, Ratan-
amahatana CA, Yanping Hu B, Begum N, Bagnall A, Mueen A,

Batista G, Hexagon-ML (2018) The UCR time series classifica-
tion archive. https://​www.​cs.​ucr.​edu/​~eamonn/​time_​series_​data_​
2018/

Fu TC (2011) A review on time series data mining. Eng Appl Artif
Intell 24(1):164–181. https://​doi.​org/​10.​1016/j.​engap​pai.​2010.​
09.​007

Gupta L, Molfese DL, Tammana R, Simos PG (1996) Nonlinear align-
ment and averaging for estimating the evoked potential. IEEE
Trans Biomed Eng 43(4):348–356. https://​doi.​org/​10.​1109/​10.​
486255

He H, et al (2018) Applications of reference cycle building and K-shape
clustering for anomaly detection in the semiconductor manufac-
turing process. PhD thesis, Massachusetts Institute of Technology
. https://​dspace.​mit.​edu/​handle/​1721.1/​120246

Holder C, Middlehurst M, Bagnall A (2024) A review and evaluation
of elastic distance functions for time series clustering. Knowl Inf
Syst 66(2):765–809. https://​doi.​org/​10.​1007/​s10115-​023-​01952-0

Kim S-W. Park S, Chu WW (2001) An index-based approach for simi-
larity search supporting time warping in large sequence databases.
In: Proceedings 17th International conference on data engineer-
ing, pp 607– 614 (2001). https://​doi.​org/​10.​1109/​ICDE.​2001.​
914875 . IEEE

Kumar U, Legendre CP, Zhao L, Chao BF (2022) Dynamic time warp-
ing as an alternative to windowed cross correlation in seismologi-
cal applications. Seismol Soc Am 93(3):1909–1921. https://​doi.​
org/​10.​1785/​02202​10288

Leite D, Škrjanc I, Gomide F (2020) An overview on evolving systems
and learning from stream data. Evol Syst 11(2):181–198. https://​
doi.​org/​10.​1007/​s12530-​020-​09334-5

Lim T, Ong CS (2021) Portfolio diversification using shape-based
clustering. J Finan Data Sci 3(1):111. https://​doi.​org/​10.​3905/​
jfds.​2020.1.​054

Liu Y-T, Zhang Y-A, Zeng M (2019) Adaptive global time sequence
averaging method using dynamic time warping. IEEE Trans Sig-
nal Process 67(8):2129–2142. https://​doi.​org/​10.​1109/​TSP.​2019.​
28979​58

Liu Y, Zhang Y-A, Zeng M, Zhao J (2023) A novel shape-based averag-
ing algorithm for time series. Eng Appl Artif Intell 126:107098.
https://​doi.​org/​10.​1016/j.​engap​pai.​2023.​107098

Masini RP, Medeiros MC, Mendes EF (2023) Machine learning
advances for time series forecasting. J Econ Surv 37(1):76–111.
https://​doi.​org/​10.​1111/​joes.​12429

Morel M, Achard C, Kulpa R, Dubuisson S (2018) Time-series aver-
aging using constrained dynamic time warping with tolerance.
Pattern Recogn 74:77–89. https://​doi.​org/​10.​1016/j.​patcog.​
2017.​08.​015

Ng RT, Han J (2002) Clarans: A method for clustering objects for
spatial data mining. IEEE Trans Knowl Data Eng 14(5):1003–
1016. https://​doi.​org/​10.​1109/​TKDE.​2002.​10337​70

Niennattrakul V, Ratanamahatana CA (2009) Shape averaging under
time warping. In: 2009 6th International conference on electri-
cal engineering/electronics, computer. Telecommun Inf Technol
2:626–629. https://​doi.​org/​10.​1109/​ECTIC​ON.​2009.​51371​28.
(IEEE)

Niennattrakul V, Ratanamahatana CA (2007) Inaccuracies of shape
averaging method using dynamic time warping for time series
data. In: Computational Science–ICCS 2007: 7th International
conference, Beijing, China, May 27-30, 2007, Proceedings, Part
I 7, pp 513– 520 . https://​doi.​org/​10.​1007/​978-3-​540-​72584-8_​
68 . Springer

Paparrizos J, Gravano L (2015) k-shape: efficient and accurate
clustering of time series. In: Proceedings of the 2015 ACM
SIGMOD International conference on management of data, pp
1855– 1870 https://​doi.​org/​10.​1145/​27233​72.​27377​93

Petitjean F, Ketterlin A, Gançarski P (2011) A global averag-
ing method for dynamic time warping, with applications to

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10618-018-0596-4
https://doi.org/10.1007/s10618-018-0596-4
https://www.aeon-toolkit.org/en/stable/
https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1016/j.engappai.2017.10.020
https://doi.org/10.1016/j.engappai.2017.10.020
https://doi.org/10.3390/s21134395
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1109/PowerTech46648.2021.9494830
https://doi.org/10.1109/PowerTech46648.2021.9494830
https://doi.org/10.1007/s12530-013-9084-7
https://doi.org/10.1007/s12530-013-9084-7
https://doi.org/10.1080/00031305.1983.10483115
https://proceedings.mlr.press/v70/cuturi17a.html
https://proceedings.mlr.press/v70/cuturi17a.html
http://arxiv.org/abs/1810.07758
https://www.cs.ucr.edu/%7eeamonn/time_series_data_2018/
https://www.cs.ucr.edu/%7eeamonn/time_series_data_2018/
https://doi.org/10.1016/j.engappai.2010.09.007
https://doi.org/10.1016/j.engappai.2010.09.007
https://doi.org/10.1109/10.486255
https://doi.org/10.1109/10.486255
https://dspace.mit.edu/handle/1721.1/120246
https://doi.org/10.1007/s10115-023-01952-0
https://doi.org/10.1109/ICDE.2001.914875
https://doi.org/10.1109/ICDE.2001.914875
https://doi.org/10.1785/0220210288
https://doi.org/10.1785/0220210288
https://doi.org/10.1007/s12530-020-09334-5
https://doi.org/10.1007/s12530-020-09334-5
https://doi.org/10.3905/jfds.2020.1.054
https://doi.org/10.3905/jfds.2020.1.054
https://doi.org/10.1109/TSP.2019.2897958
https://doi.org/10.1109/TSP.2019.2897958
https://doi.org/10.1016/j.engappai.2023.107098
https://doi.org/10.1111/joes.12429
https://doi.org/10.1016/j.patcog.2017.08.015
https://doi.org/10.1016/j.patcog.2017.08.015
https://doi.org/10.1109/TKDE.2002.1033770
https://doi.org/10.1109/ECTICON.2009.5137128
https://doi.org/10.1007/978-3-540-72584-8_68
https://doi.org/10.1007/978-3-540-72584-8_68
https://doi.org/10.1145/2723372.2737793

Evolving Systems (2025) 16:82	 Page 17 of 17  82

clustering. Pattern Recogn 44(3):678–693. https://​doi.​org/​10.​
1016/j.​patcog.​2010.​09.​013

Rasines I, Remazeilles A, Prada M, Cabanes I (2023) Minimum
cost averaging for multivariate time series using constrained
dynamic time warping: a case study in robotics. IEEE Access.
https://​doi.​org/​10.​1109/​ACCESS.​2023.​33007​20

Ratanamahatana CA, Keogh E (2004) Making time-series classifica-
tion more accurate using learned constraints. In: Proceedings
of the 2004 SIAM International conference on data mining, pp
11– 22 . https://​doi.​org/​10.​1137/1.​97816​11972​740.2 . SIAM

Schubert E, Sander J, Ester M, Kriegel HP, Xu X (2017) Dbscan
revisited, revisited: why and how you should (still) use dbscan.
ACM Trans Database Syst (TODS) 42(3):1–21. https://​doi.​org/​
10.​1145/​30683​35

Schultz D, Jain B (2018) Nonsmooth analysis and subgradient meth-
ods for averaging in dynamic time warping spaces. Pattern Rec-
ogn 74:340–358. https://​doi.​org/​10.​1016/j.​patcog.​2017.​08.​012

Shirota Y, Murakami A (2021) Long-term time series data clustering
of stock prices for portfolio selection. In: 2021 IEEE Interna-
tional conference on service operations and logistics, and infor-
matics (SOLI), pp 1– 6 (2021). https://​doi.​org/​10.​1109/​SOLI5​
4607.​2021.​96724​07 . IEEE

Singh T, Kalra R, Mishra S, Satakshi, Kumar M (2023) An efficient
real-time stock prediction exploiting incremental learning and
deep learning. Evol Syst 14(6):919–937. https://​doi.​org/​10.​
1007/​s12530-​022-​09481-x

Škrjanc I (2021) eGAUSS+ evolving clustering in classification. In:
2021 IEEE 15th International Symposium on Applied Computa-
tional Intelligence and Informatics (SACI), pp 533– 538 .https://​
doi.​org/​10.​1109/​SACI5​1354.​2021.​94656​15 . IEEE

Škrjanc I, Andonovski G, Ledezma A, Sipele O, Iglesias JA, Sanchis
A (2018) Evolving cloud-based system for the recognition of
drivers’ actions. Expert Syst Appl 99:231–238. https://​doi.​org/​
10.​1016/j.​eswa.​2017.​11.​008

Škrjanc I, Iglesias JA, Sanchis A, Leite D, Lughofer E, Gomide F
(2019) Evolving fuzzy and neuro-fuzzy approaches in cluster-
ing, regression, identification, and classification: A survey. Inf
Sci 490:344–368. https://​doi.​org/​10.​1016/j.​ins.​2019.​03.​060

Škrjanc I, Andonovski G, Iglesias JA, Sesmero MP, Sanchis A (2022)
Evolving gaussian on-line clustering in social network analysis.
Expert Syst Appl 207:117881. https://​doi.​org/​10.​1016/j.​eswa.​
2022.​117881

Stefan A, Athitsos V, Das G (2012) The move-split-merge metric
for time series. IEEE Trans Knowl Data Eng 25(6):1425–1438.
https://​doi.​org/​10.​1109/​TKDE.​2012.​88

Stržinar Ž, Pregelj B, Petrovčič J, Škrjanc I, Dolanc G (2024) Pneu-
matic Pressure and Electrical Current Time Series in Manufac-
turing. Mendeley Data (2024). https://​doi.​org/​10.​17632/​ypzsw​
hhzh9.2 . https://​data.​mende​ley.​com/​datas​ets/​ypzsw​hhzh9/2

Stržinar Ž, Pregelj B, Petrovčič J, Škrjanc I, Dolanc G (2024) Time
series insights from the shopfloor: A real-world dataset of pneu-
matic pressure and electrical current in discrete manufacturing.
Data in Brief, 110619 https://​doi.​org/​10.​1016/j.​dib.​2024.​110619

Stržinar Ž, Pregelj B, Škrjanc I (2024) Analysis of time series align-
ment and averaging methods. In: Proceedings of the 33. Inter-
national electrotechnical and computer science conference ERK
2024, Portorož, Slovenia

Stržinar Ž, Škrjanc I, Pratama M, Pregelj B (2024) Evolving clustering
of time series for unsupervised analysis of industrial data streams.
Available at SSRN 5026151 https://​doi.​org/​10.​2139/​ssrn.​50261​51

Stržinar, Ž., Škrjanc, I (2022) Self-tuned model-based predictive
control using evolving fuzzy model of a non-linear dynamic pro-
cess. In: Explainable AI and Other Applications of Fuzzy Tech-
niques: Proceedings of the 2021 Annual Conference of the North
American Fuzzy Information Processing Society, NAFIPS 2021,
pp. 406– 421 . https://​doi.​org/​10.​1007/​978-3-​030-​82099-2_​37 .
Springer

Stržinar Ž, Pregelj B, Škrjanc I (2023) Soft sensor for non-invasive
detection of process events based on eigenresponse fuzzy clus-
tering. Appl Soft Comput 132:109859. https://​doi.​org/​10.​1016/j.​
asoc.​2022.​109859

Stržinar Ž, Pregelj B, Škrjanc I (2024) Non-elastic time series fuzzy
clustering for efficient analysis of industrial data sets. Appl Soft
Comput 167:112398. https://​doi.​org/​10.​1016/j.​asoc.​2024.​112398

Yi B-K, Jagadish HV, Faloutsos C (1998) Efficient retrieval of similar
time sequences under time warping. In: Proceedings 14th Interna-
tional conference on data engineering, pp 201– 208 . https://​doi.​
org/​10.​1109/​ICDE.​1998.​655778 . IEEE

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.patcog.2010.09.013
https://doi.org/10.1016/j.patcog.2010.09.013
https://doi.org/10.1109/ACCESS.2023.3300720
https://doi.org/10.1137/1.9781611972740.2
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3068335
https://doi.org/10.1016/j.patcog.2017.08.012
https://doi.org/10.1109/SOLI54607.2021.9672407
https://doi.org/10.1109/SOLI54607.2021.9672407
https://doi.org/10.1007/s12530-022-09481-x
https://doi.org/10.1007/s12530-022-09481-x
https://doi.org/10.1109/SACI51354.2021.9465615
https://doi.org/10.1109/SACI51354.2021.9465615
https://doi.org/10.1016/j.eswa.2017.11.008
https://doi.org/10.1016/j.eswa.2017.11.008
https://doi.org/10.1016/j.ins.2019.03.060
https://doi.org/10.1016/j.eswa.2022.117881
https://doi.org/10.1016/j.eswa.2022.117881
https://doi.org/10.1109/TKDE.2012.88
https://doi.org/10.17632/ypzswhhzh9.2
https://doi.org/10.17632/ypzswhhzh9.2
https://data.mendeley.com/datasets/ypzswhhzh9/2
https://doi.org/10.1016/j.dib.2024.110619
https://doi.org/10.2139/ssrn.5026151
https://doi.org/10.1007/978-3-030-82099-2_37
https://doi.org/10.1016/j.asoc.2022.109859
https://doi.org/10.1016/j.asoc.2022.109859
https://doi.org/10.1016/j.asoc.2024.112398
https://doi.org/10.1109/ICDE.1998.655778
https://doi.org/10.1109/ICDE.1998.655778

	Evolving interval-based time series clustering for streaming industrial data
	Abstract
	1 Introduction
	2 Related work
	2.1 Alignment and averaging methods
	2.2 ERAL and streaming ERAL
	2.3 Time series clustering

	3 Material and methods
	3.1 Error in aligned series – ERAL
	3.2 Streaming ERAL - sERAL
	3.2.1 Calculating PSV and PCV

	3.3 Interval ERAL - iERAL
	3.3.1 Calculating PIV
	3.3.2 PIV initialization problem
	3.3.3 Merging with iERAL
	3.3.4 Availability

	3.4 Evolving time series clustering
	3.4.1 iERAL-based distance calculation
	3.4.2 Evolving clustering demonstration

	4 Experiment and results
	4.1 Comparison of alignment and averaging methods
	4.2 Evolving clustering of unlabeled industrial data
	4.3 Comparison of evolving clustering results and ground truth labels
	4.4 Comparison to other time series clustering algorithms

	5 Discussion
	6 Conclusion and future work
	A noise estimation
	Acknowledgements
	References

