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Abstract
Accurate clustering of time series data is crucial for extracting meaningful insights from streaming sensor data in industrial 
applications. To address the challenges of dynamic and unlabeled data streams, we introduce Interval ERAL (iERAL), an 
enhancement of the Error in Aligned Series (ERAL) framework. iERAL is a time series alignment and averaging method 
designed for online analysis, incorporating an interval band to represent variance in the underlying data. We pair iERAL 
with an evolving time series clustering algorithm, capable of automatically detecting, adapting to, and merging clusters in 
real-time. This evolving approach enables the algorithm to dynamically adjust to new patterns, promote or demote clusters 
based on their relevance, and handle data variability with interval-based analysis. Unlike previous methods, our approach 
not only computes the time series prototype for each cluster but also provides a variance band for interval-based analysis. 
We demonstrate the effectiveness of our method by applying it to line pressure measurements in a real-world industrial set-
ting. The algorithm achieves promising results in clustering unlabeled data streams, highlighting its potential for anomaly 
detection and adaptive monitoring of industrial processes in evolving operating conditions.

Keywords  Evolving clustering · Time series clustering · Time series prototype · Unsupervised learning · Industrial 
application

1  Introduction

The significance of time series analysis has grown with the 
increasing accessibility of sensor data across fields such as 
automotive, manufacturing, healthcare, and finance. Unlike 
many other types of data, the sequence of observations in 
time series data is critical. Consequently, specialized analyti-
cal approaches have been developed to respect this temporal 
structure.

Time series analysis encompasses several sub-disciplines, 
each addressing specific challenges. The most prominent 
include time series forecasting, clustering, and classifica-
tion. Forecasting (Masini et al. 2023) predicts future values 
based on historical patterns. Clustering methods (Aghabo-
zorgi et al. 2015; Paparrizos and Gravano  2015) group 
similar time series, while classification techniques (Bagnall 
et al. 2017; Dau et al. 2018; Abanda et al. 2019) assign time 
series to predefined categories. These approaches rely on 
algorithms tailored to the complexity and temporal nature 
of time-dependent data.

Time series clustering is applied when no labeled exam-
ples are available, and the objective is to identify natural 
groupings among time series. This technique has diverse 
applications, such as clustering stock market time series to 
aid portfolio diversification (Lim and Ong 2021; Shirota and 
Murakami 2021) and distinguishing power system events 
using clustering methods (Bariya et al. 2021).

Conventional clustering methods often assume access to 
a static dataset; however, real-world applications frequently 
require handling continuously streaming data. In such cases, 
a single-pass, online algorithm offers significant advantages 
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(Škrjanc et al. 2019; Andonovski et al. 2018; Leite et al. 
2020; Antić et al. 2021; Škrjanc et al. 2022, 2018; Blažič 
et al. 2014; Singh et al. 2023). Additionally, an evolving 
model capable of updating itself as new data arrives, can 
adapt to changing data distributions over time.

An evolving time series clustering approach is highly 
valuable in manufacturing environments for continuous 
monitoring of machine health. As sensor data is collected 
in real time, the model can dynamically cluster incom-
ing time series to uncover patterns and identify anomalies 
before they escalate into equipment failures. By updating 
itself, the model remains effective as operating conditions 
change, such as by introducing new clusters for emerging 
patterns or adjusting existing clusters to reflect altered data 
distributions.

The present paper contributes to the time series analysis 
literature by proposing Interval ERAL (iERAL), a method 
for time series clustering that represents a cluster of time 
series using a single series – the cluster’s prototype. Addi-
tionally, the paper introduces an evolving time series clus-
tering algorithm that uses iERAL to process streaming data 
in a single pass. The algorithm can automatically determine 
the number of clusters required, add new clusters, and merge 
existing ones as the data evolves.

The paper is structured as follows. Section 2 presents 
related work on time series alignment and averaging meth-
ods, as well as time series clustering methods. Section 3 
provides a detailed explanation of ERAL and sERAL, and 
introduces iERAL. Additionally, an evolving time series 
clustering algorithm, designed for use with iERAL, is 
described. Section 4 discusses experimental results, includ-
ing a comparison of alignment and averaging methods, 
evolving clustering of unlabeled industrial data, and a com-
parison of evolving clustering results with ground truth 
labels. Section 5 analyses the results, and Sect. 6 concludes 
the paper and outlines future work.

2 � Related work

A crucial component of many clustering algorithms is the 
calculation of a cluster prototype. Prototypes, or centroids, 
are representatives of clusters used in methods such as 
K-Means, K-Medoids, and Fuzzy C-Means. In time series 
clustering, the prototype is a time series that characterizes 
the cluster. Prototypes facilitate further analysis, including 
classification, anomaly detection, and visualization. They 
also help interpret clusters by revealing average behaviors 
or common patterns within the cluster.

2.1 � Alignment and averaging methods

A set of time series analysis methods, known as alignment 
and averaging methods (Petitjean et al. 2011; Schultz and 
Jain 2018; Liu et al. 2023; Rasines et al. 2023; Morel et al. 
2018; Liu et al. 2019; Stržinar et al. 2024), address the chal-
lenge of representing a set of time series. These methods 
map a set of time series X = {x1, x2,… , xn} to a single pro-
totype time series.

The prototype time series p represents the set of time 
series X and is used for further analysis. Historically, these 
methods aimed to find the barycenter of the set using 
Dynamic Time Warping (DTW) Berndt and Clifford (1994) 
as the distance function. Early methods (Niennattrakul and 
Ratanamahatana 2009; Gupta et al. 1996) often performed 
poorly (Liu et al. 2023; Petitjean et al. 2011; Niennattrakul 
and Ratanamahatana  2007). However, many issues were 
alleviated by DTW Barycenter Averaging (DBA) Petitjean 
et al. (2011), which has become the standard for time series 
averaging. Recent methods primarily aim to improve DBA, 
focusing on algorithm speed or prototype quality. Notable 
advancements include the Stochastic Subgradient Method 
(SSG) Schultz and Jain (2018), ShapeDWA (Liu et al. 2023) 
and SoftDTW (Cuturi and Blondel 2017).

All the aforementioned methods are based on Dynamic 
Time Warping (DTW), a widely used distance function for 
time series. DTW aligns time series of different lengths and 
is robust to noise. It has been applied to classification (Dau 
et al. 2018; Stržinar et al. 2023), robotics in Rasines et al. 
(2023), seismology (Kumar et al. 2022), semiconductor 
manufacturing (He et al. 2018). It operates by finding the 
optimal alignment between two time series via the path with 
the lowest cost in a cost matrix, allowing local stretching and 
compressing of time series. While DTW is often criticized 
for its computational expense, various optimizations have 
been proposed to improve its efficiency (Ratanamahatana 
and Keogh  2004), Yi et al. (1998), Kim et al. (2001).

Despite the popularity of DBA, recent research highlights 
unintuitive solutions arising from DTW-based methods for 
alignment and averaging. For example, Liu et al. (2023); 
Rasines et al. (2023); Morel et al. (2018); Liu et al. (2019); 
Stržinar et  al. (2024) demonstrates several cases where 
DTW-based methods fail to produce meaningful prototype 
time series, often resulting in artifacts such as phantom pla-
teaus and spikes.

The limitations of DTW-based methods have led to 
the development of alternative approaches for alignment 
and averaging. One such method is Shape-based Distance 
(SBD) Paparrizos and Gravano  (2015), which empha-
sizes the overall shape of the time series. Another example 
is Soft-DTW, which uses a differentiable approximation 
of DTW (Cuturi and Blondel 2017). Both methods have 
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demonstrated superior performance compared to DBA in 
specific scenarios.

2.2 � ERAL and streaming ERAL

Recently, a method called Error in Aligned Series (ERAL) 
Stržinar et al. (2024) was introduced, based on optimal non-
elastic alignment of time series. Applied to an industrial 
dataset (Stržinar et al. 2024), the method produced promis-
ing results, also validated using the UCR Archive (Dau et al. 
2018). ERAL has been shown to outperform DBA and other 
DTW-based methods in speed while avoiding artifacts such 
as phantom plateaus or spikes, and capturing the underlying 
shape of the data.

ERAL employs an iterative process where a prototype 
candidate is repeatedly aligned with the dataset and incre-
mentally adjusted. This process continues until the prototype 
converges. An error function called the ERAL score is used 
to compute the optimal alignment of each time series in the 
dataset and the current prototype candidate. The candidate 
is then updated based on the alignment results, with the pro-
cess repeated for each iteration.

While ERAL generates high-quality prototypes, it is 
designed for batch processing, requiring the entire dataset 
to be processed before producing a prototype. This limita-
tion is impractical in many clustering scenarios, where itera-
tive updates are needed. To address this, Streaming ERAL 
(sERAL) Stržinar et al. (2024) was introduced. sERAL pro-
cesses data incrementally, updating the prototype as new 
samples arrive. It produces prototypes similar to ERAL 
while enabling real-time data processing, making it suit-
able for online clustering applications.

sERAL introduces two internal structures: the Prototype 
Shape Vector (PSV) and the Prototype Confidence Vector 
(PCV). These structures accumulate information from time 
series processed in the past and can be used at any time to 
compute the prototype.

ERAL and sERAL form the foundation of our work in 
this paper. These methods will be discussed in detail in 
Sect. 3.

Table 1 provides a comparison of various alignment and 
averaging methods, highlighting their key features and per-
formance differences.

2.3 � Time series clustering

Clustering algorithms are fundamental tools in data analysis, 
enabling the exploration of unlabeled data. These algorithms 
are particularly useful in time series analysis for identify-
ing patterns or grouping similar time series. Applications 
of time series clustering include training of coloborative 
robots (Rasines et al. 2023), semiconductor manufacturing 
and anomaly detection (He et al. 2018), portfolio diversifica-
tion (Shirota and Murakami 2021).

A common approach to time series clustering is the use of 
K-Means or K-Medoids algorithms paired with some time-
series-specific distance measure, for example Dynamic Time 
Warping (DTW) Berndt and Clifford (1994) or Move-Split-
Merge (MSM) Stefan et al. (2012). This approach has been 
thoroughly explored in Holder et al. (2024). Further, gen-
eral-purpose clustering algorithms, such as DBSCAN can 
be used in conjunction with a time series distance measure, 
such as DTW, and applied to time series datasets (Schubert 
et al. 2017).

A notable specialized time series clustering algorithm 
is K-Shape, introduced in Paparrizos and Gravano  (2015). 
This algorithm clusters time series by their shape, using a 
distance function called Shape-based Distance (SBD), which 
employs cross-correlation to compare the shapes of two time 
series. K-Shape has been applied in various domains, includ-
ing portfolio diversification (Shirota and Murakami 2021) 
and energy sector (Bariya et al. 2021). However, K-Shape 
has several limitations: it cannot process time series of vary-
ing lengths, operates as a batch algorithm, and cannot handle 
data in a single pass. Additionally, prototypes generated by 
SBD often exhibit edge artifacts (Stržinar et al. 2024).

To address the batch processing limitation of K-Shape, 
K-ShapeStream was developed (Bariya et al. 2021). This 
algorithm processes data in a single pass, updating proto-
types incrementally as new samples arrive. However, the 
other limitations of K-Shape, such as edge artifacts and 

Table 1   Comparison of time series alignment and averaging methods

Method Type Underlying distance Time-warped 
prototypes

Key benefit

DBA Petitjean et al. (2011) Batch DTW Yes Optimized for DTW
SBD Paparrizos and Gravano  (2015) Batch SBD No No spikes and plateaus
ERAL Stržinar et al. (2024) Batch ERAL score No No spikes and plateaus
sERAL Stržinar et al. (2024) Single-pass ERAL score No Adds single pass to ERAL
iERAL (This work) Single-pass ERAL score No Adds interval band
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inability to handle varying time series lengths, remain 
unresolved.

Neither K-Shape nor K-ShapeStream can automatically 
determine the number of clusters required to represent the 
data. This limitation is common among clustering algo-
rithms and is often addressed by experimenting with varying 
user-defined numbers of clusters and selecting the optimal 
configuration. However, this approach is impractical for 
streaming data, where the number of clusters may dynami-
cally change over time.

Evolving algorithms, which can automatically adjust the 
model structure (e.g., the number of clusters), offer a flex-
ible and robust solution. Despite their potential advantages, 
these algorithms have not been widely adopted in time series 
clustering, possibly due to the computational challenges or 
lack of specialized implementations.

In this paper, we present an Evolving Time Series Clus-
tering algorithm capable of detecting the number of clusters, 
adding and merging clusters dynamically, and processing all 
data in a single pass. This is achieved using the ERAL-based 
alignment and averaging method described in Sect. 3.

3 � Material and methods

In time series analysis, warping the time axis is common, 
typically achieved using Dynamic Time Warping (DTW) or 
other elastic distance functions. However, in certain situa-
tions–such as analyzing data from industrial processes–time 
axis warping may not be desirable, since even small devia-
tions in signal shape can indicate a fault, an unintended pro-
cess change, or another anomaly. Elastic approaches may 
obscure such deviations, making non-elastic distance func-
tions preferable in these contexts.

Another critical aspect of time series analysis is seg-
menting continuous sensor outputs into discrete segments, 
a process known as segmentation. Segmentation is crucial 
for analyzing industrial processes, as it determines the level 
of detail downstream algorithms can capture. For instance, 
fine-grained segmentation may detect simple patterns but 
lose the broader context if downstream algorithms lack 
memory of prior segments. Conversely, coarse segmenta-
tion might limit process insights. Selecting the appropriate 
segmentation level is challenging, especially when segment 
boundaries are not clearly defined–such as during gradual 
signal changes–making boundary decisions difficult and 
potentially unreliable.

These two aspects–non-elastic alignment and segmenta-
tion–motivated the development of Error in Aligned Series 
(ERAL) Stržinar et al. (2024). ERAL is designed to mini-
mize excessive warping of time series and provide robust-
ness against non-ideal segmentation.

3.1 � Error in aligned series – ERAL

Error in Aligned Series (ERAL) is an iterative method 
designed to compute the prototype of a set of time series. 
It optimizes the prototype without excessive warping, 
ensuring that the result effectively represents the dataset.

Throughout this work, underlined lowercase letters 
(e.g., x, x

j
 ) denote univariate time series composed of sca-

lar elements. Subscripts such as xk refer to the k-th scalar 
value in the time series x . Expressions like xk−� indicate 
index-shifted access to these scalar values and should not 
be interpreted as item separation or as multiple distinct 
variables.

Let x and y be time series of lengths N and M, respec-
tively. The lengths of x and y may differ. Unlike some 
other methods that require equal-length time series, ERAL 
accommodates this difference. The time series are repre-
sented as:

x
�
 is a time series shifted by some � ∈ ℤ , as shown in 

Eq. (3). An example is shown in the top plot of Fig. 1, where 
y is shifted by � = 7:

No assumptions are made regarding the relative values of 
N and M; however, in the following examples, we assume 
N > M.

ERAL is an iterative method where, in each iteration, a 
candidate prototype is aligned with the dataset. To achieve 
this alignment, the ERAL score is calculated for all com-
binations of the current prototype and the time series in 
the dataset.

For x and y , the ERAL score is defined as:

(1)x = [x0, x1,… , xN−1]

(2)y = [y0, y1,… , yM−1]

(3)x
�
= [x0−� , x1−� ,… , xN−1−�]

Fig. 1   Calculation of the ERAL score for two time series
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The ERAL score describes the error of aligning two time 
series at different lags and is computed for all valid �:

The example in Fig. 1 illustrates the ERAL score for two 
time series: x = [4, 4, 4, 4, 4, 4, 4, 5, 6, 5, 2, 2, 3, 4, 4, 4] and 
y = [5, 6, 5, 2, 2, 3, 4] . A global minimum is observed at 
� = 8 , where the two time series are optimally aligned.

The lag corresponding to the minimum ERAL score is 
called the optimal lag �∗:

ERAL uses �∗ to align the prototype candidate with the data-
set, ensuring that the candidate is optimally positioned for 
refinement.

In each iteration (indexed by j), a set of H time series 
X = {x1, x2,… , xH} is aligned to the current prototype can-
didate pj , resulting in X∗,j = {x1

∗,j
, x2

∗,j
,… , xH

∗,j
} . These 

aligned time series are then used to update the prototype:

Figure 2 provides a simplified diagram of the ERAL pro-
cess. The prototype candidate is aligned with the dataset, 
and an error vector is computed. The prototype candidate is 
adjusted using this error vector, and the process repeats over 
several iterations until the prototype converges. For complete 
details on ERAL, see Stržinar et al. (2024).

3.2 � Streaming ERAL ‑ sERAL

While prototypes generated by ERAL are of high quality 
and avoid the issues seen in DBA, SSG, or other DTW-
based methods, ERAL does not support online processing. 
This limitation poses challenges in real-world applications 

(4)�x,y(�) = �x,y(�)
−1
√∑

k

(xk − yk−�)
2

(5)𝜈x,y(𝜏) =

⎧
⎪⎨⎪⎩

√
M − �𝜏� if 𝜏 < 0√
N − �𝜏� if 𝜏 > N −M√
M otherwise

(6)� ∈
[
−M + 1, N − 1

]

(7)�∗ = argmin ��x,y(�)

(8)x
∗
= [x0−�∗ , x1−�∗ ,… , xN−1−�∗ ]

(9)pj+1 = pj + �

H∑
i=1

wi,j ⋅ (xi
∗,j

− pj)

(10)wi = 1∕�xi,p(�
∗)

where data streams continuously and models must update 
in real-time. An example is monitoring industrial processes, 
where sensor data is collected and analyzed for anomalies in 
real time. Streaming ERAL (sERAL) Stržinar et al. (2024), 
described here, extends ERAL to support online processing.

With sERAL, two internal structures are introduced: the 
Prototype Shape Vector (PSV) and the Prototype Confidence 
Vector (PCV). Together, these structures store information 
about past time series and can be used to calculate the pro-
totype at any time.

•	 PSV: A vector containing the average shape of all pro-
cessed time series. Each incoming time series is aligned 
to the current prototype before updating the PSV. As 
new time series arrive, PSV evolves by expanding left 
or right to accommodate the aligned input series. The 
exact mechanism for calculating PSV will be detailed in 
Sect. 3.2.1.

•	 PCV: A vector of the same length as PSV, represent-
ing the proportion of past inputs used for each point in 

Fig. 2   Simplified diagram showing the ERAL process
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PSV. This adjustment accounts for varying time series 
lengths (e.g., a short sample only updates a portion of 
PSV, increasing PCV in that region). PCV also reflects 
partial overlaps caused by non-zero alignments.

•	 Prototype: A continuous subset of PSV where PCV 
exceeds a certain threshold, which is a hyperparameter 

of the model. Based on our experience, a threshold of 
50 − 80% is a suitable starting point.

The concept of sERAL is illustrated in Fig. 3. Each incoming 
time series is aligned with the current prototype, and the PSV 
and PCV are updated accordingly. This process is repeated for 
every incoming time series.

3.2.1 � Calculating PSV and PCV

Let PSV in the j-th iteration be rj , and PCV be qj . Similarly, 
the prototype is then pj:

ij,min is analogous to k in Eq. (13), and Pj = ij,max − ij,min , 
resulting in:

When a sample xj is passed to sERAL, the ERAL score is 
calculated for xj and the prototype from the previous itera-
tion pj−1:

Equations (5) and (6) are used for � and the range of The 
resulting ERAL score �xj,pj−1(�) is then used to determine the 
optimal alignment:

Let x∗
j
 be xj shifted to align with rj (see Fig. 4). After align-

ing the incoming time series and the existing prototype, PSV 
can be updated as defined in Eq. (19).

(11)rj = [rj,0, rj,1,… , rj,Rj−1
]

(12)qj = [qj,0, qj,1,… , qj,Rj−1
]

(13)pj = [rj,k, rj,k+1,… , rj,k+Pj
], where 0 ≤ k ≤ Rj − Pj

(14)ij,min = min{i ∣ qj,i > 𝛼}

(15)ij,max = max{i ∣ qj,i > 𝛼}

(16)pj = [rj,i ∣ ij,min ≤ i ≤ ij,max]

(17)�xj,pj−1(�) = �−1
xj,pj−1

(�)

√∑
k

(xj,k − pj−1,k−� )
2

(18)�∗
x,p

= argmin ��x,p(�)

(19)
rj+1,i =

⎧
⎪⎨⎪⎩

j

j + 1
rj,i +

1

j + 1
x∗
j,i

if 0 ≤ i − �∗
x,p

− ij,min ≤ N (overlap region)

rj,i otherwise

Fig. 3   Diagram illustrating the calculation of the sERAL prototype
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In the overlap regions (see Fig. 4), new input data is consid-
ered, increasing our confidence in the PSV values at those 
indices. Consequently, the confidence values expressed by 
PCV are updated as follows:

As new data xj is added, it may align such that it extends 
beyond the current lengths of rj and qj . In such cases, PSV 
and PCV are extended by padding to the left and/or right. 
See Fig. 4b.

The newly added elements in PSV (padding) take their val-
ues from the aligned sample, while the newly added ele-
ments in PCV are initialized with 1

j+1
.

3.3 � Interval ERAL ‑ iERAL

The prototypes generated by sERAL are of high quality, gen-
erated in real-time, and avoid the issues seen in DBA, SSG, 
or other DTW-based methods. However, a simple exten-
sion presented in this paper may further enhance the utility 
of ERAL-based prototyping methods. In this section, we 

(20)

qj+1,i =

{
j

j+1
qj,i +

1

j+1
if 0 ≤ i − �∗

x,p
− ij,min ≤ N (overlap region)

j

j+1
qj,i otherwise

(21)len(rj) + N > len(rj+1) > len(rj)

introduce Interval ERAL (iERAL), which extends sERAL 
by adding a variance band to the prototype.

The variance band measures the spread of the underlying 
data and is calculated in parallel with PSV and PCV.

The benefits of adding the variance band include: 

1.	 Improved insight into the underlying data. The vari-
ance band indicates the spread of the data, aiding in 
identifying outliers or detecting changes in data distribu-
tion.

2.	 Enhanced distance functions. Information on data dis-
tribution enables the use of interval-based and probabil-
ity-based distance functions. These functions are more 
robust to noise and outliers, offering a more accurate 
measure of similarity between time series.

3.	 Adaptability to non-stationary data. Many processes 
generate non-stationary data, where the distribution 
changes over time. The variance band helps quantify 
these changes, detect anomalies, and react appropriately.

In sERAL, PSV and PCV retain information about the shape 
and alignment of the underlying data. In iERAL, a third 
component is introduced: the Prototype Interval Vector 
(PIV). PIV is a vector of the same length as PSV and PCV, 
containing the standard deviation of the data at each point 
in PSV. It is calculated in parallel with PSV and PCV and is 
used to compute the variance band.

Fig. 4   Demonstration of x∗
j
 aligned to the prototype pj . If x∗j  extends past rj , PSV (as well as PCV and PIV) is extended accordingly
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The prototype is still derived from PSV and PCV, and it 
is unaffected by the variance band. This ensures full com-
patibility between iERAL and sERAL. The variance band 
serves as an additional component, enabling iERAL’s use in 
a broader range of applications.

3.3.1 � Calculating PIV

PSV and PCV are calculated online, necessitating an online 
formula for standard deviation to compute PIV. Welford’s 
online algorithm (Chan and G.H.G., Leveque, R.J. 1983) is 
a widely used method for calculating the standard deviation 
of a data stream previously applied in Stržinar et al. (2022); 
Škrjanc (2021); Stržinar et al. (2024). It is based on the fol-
lowing formulas:

(22)�n = �n−1 +
xn − �n−1

n

(23)M2,n = M2,n−1 + (xn − �n−1)(xn − �n)

Welford’s algorithm is suitable for calculating the standard 
deviation of a stream of scalars (see Fig. 5). However, in our 
case, we deal with a stream of time series. We propose an 
extension of Welford’s algorithm to calculate the standard 
deviation of a stream of time series, as illustrated in Fig. 6.

PSV from Eq. (19) already implements an iterative calcu-
lation of the mean value at each index and can serve as an 
alternative to Eq. (22).

Welford’s approach requires storing M2 for each index. To 
achieve this, we define m:

Here, mj represents m at the j-th iteration. It has the same 
length Rj as r and q in Eqs. (11) and (12).

Equation (23) calculates the sum of squared differences 
between the data points and the mean, forming the core of 
Welford’s approach. This calculation is repeated for every 
element of m:

(24)�n =

√
M2,n

n

(25)mj = [mj,0,mj,1,… ,mj,Rj−1
]

Fig. 5   Welford’s algorithm for 
calculating the standard devia-
tion of a stream of scalars

Fig. 6   Evolution of PSV, PCV, 
and PIV in iERAL. Each row 
represents the state after pro-
cessing a new time series



Evolving Systems (2025) 16:82	 Page 9 of 17  82

Finally, the standard deviation formula (24) is extended to 
calculate the standard deviation at each index. In Eq. (24), 
the M2 value is divided by the number of samples used to 
compute � and M2 . PCV is used to determine the number of 
samples at each index:

As shown in Fig. 6, the standard deviation is calculated for 
each index of the time series and is not constant throughout 
the series.

3.3.2 � PIV initialization problem

In the first row of Fig. 6, the standard deviation band is 
not zero. Using Eqs. (26) and (27), the standard deviation 
of a single sample would be zero. However, to enable the 
use of interval-based distance functions, the band should 
be non-zero even for the first sample. We propose initial-
izing the band with the estimated internal noise level of 
the first sample.

Several methods exist for estimating the noise level of 
a time series. We propose using the standard deviation of 
the first derivative of the time series. Let �(⋅) compute the 
standard deviation, then:

The derivation showing that �(Δx)∕
√
2 approximates the 

noise level is provided in Appendix A.

3.3.3 � Merging with iERAL

In the context of evolving clustering, merging similar clus-
ters is often desirable. This section describes the merging 
process for two iERAL clusters.

The first step in aligning two clusters is to compute the 
alignment of their prototypes. After the alignment is deter-
mined, the PSV, PCV, and PIV vectors of the two clusters 
are aligned accordingly, with padding added where neces-
sary. The two clusters are then merged by:

•	 Weighted averaging of the PSV and PCV vectors.
•	 Summing the two PIV vectors.

(26)

mj+1,i =

{
mj,i + (x∗

j,i
− rj,i)(x

∗
j,i
− rj+1,i) if 0 < i − imin − 𝜏∗

x,p
< N

mj,i otherwise

(27)bj,i =

√
mj,i

rj,i ⋅ (j + 1)

(28)Δx = {x1 − x0, x2 − x1, ..., xN − xN−1}

(29)b0,i =
�(Δx)√

2

The merging procedure is as follows: 

1.	 Using Eqs. (14)–(16), obtain the two prototypes p1 and 
p2.

2.	 Align the two prototypes to compute the optimal lag: 

3.	 Align r1, q1, r2, q2,m1,m2 using �∗
1,2

 . Let superscript ∗ 
indicate aligned vectors (e.g., r1∗, q1∗ , etc.).

4.	 Compute the combined PSV, PCV, and PIV similarly to 
Eqs. (19), (20), and (26): 

The above procedure computes rM  , qM  , mM  , and nM , which 
define the new merged prototype.

For a detailed discussion on merging PCV and PSV, refer 
to Stržinar et al. (2024).

3.3.4 � Availability

Full source code with examples for iERAL is available at 
https://​repo.​ijs.​si/​zstrz​inar/​ieral. Additionally, a Python 
package for iERAL is available at https://​pypi.​org/​proje​ct/​
ieral/.

3.4 � Evolving time series clustering

In our work (Stržinar et al. 2024, 2024, 2023, 2024), we ana-
lyze data streams from industrial machines. By segmenting 
the stream of measurements, a series of time series segments 
is obtained. The objective of segmentation is to ensure that 

(30)�∗
1,2

= argmin �

(
�−1
1,2

√∑
k

(p1,k − p2,k−� )
2

)

(31)

rM
i
=

⎧⎪⎪⎨⎪⎪⎩

n1

n1 + n2
r1∗
i

+
n2

n1 + n2
r2∗
i

if both r1∗ and r2∗ are defined at i

r1∗
i

if only r1∗ is defined at i

r2∗
i

if only r2∗ is defined at i

(32)

qM
i
=

⎧⎪⎪⎨⎪⎪⎩

n1

n1 + n2
q1∗
i

+
n2

n1 + n2
q2∗
i

if both q1∗ and q2∗ are defined at i

n1

n1 + n2
q1∗
i

if only q1∗ is defined at i

n2

n1 + n2
q2∗
i

if only q2∗ is defined at i

(33)

mM
i
=

⎧⎪⎨⎪⎩

m1∗
i
+ m2∗

i
if both m1 and m2∗ are defined at i

m1∗
i

if only m1 is defined at i

m2∗
i

if only m2∗ is defined at i

(34)nM = n1 + n2

https://repo.ijs.si/zstrzinar/ieral
https://pypi.org/project/ieral/
https://pypi.org/project/ieral/
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each segment represents a single action performed by the 
machine. The number of possible actions and their correct 
sequence are not known in advance. Applying an evolving 
time series clustering algorithm to the sequence of seg-
ments reveals groups of similar actions. Analyzing cluster 
assignments provides insights into the machine’s actions, 
enabling the detection of erroneous sequences, defective 
actuators causing changes in time series signatures, and 
other anomalies.

Therefore, we apply the segments to an evolving time 
series clustering algorithm. Common clustering algorithms 
for time series data, such as K-Shape and K-ShapeStream, 
are insufficient for our requirements, as discussed in Sect. 2.

We propose an intuitive yet powerful application of evolv-
ing principles to time series clustering, using iERAL as the 
underlying alignment and averaging method.

The requirements of our evolving clustering algorithm 
are: 

1.	 Single-pass processing. The algorithm must process 
data in a single pass, updating the model as new data 
arrives.

2.	 Automatic cluster detection. The algorithm must auto-
matically detect the number of clusters needed to repre-
sent the data.

3.	 Support for varying time series lengths.
4.	 Handling temporal shifts. Since segmentation is not 

perfect, misalignment of key features may occur. The 
algorithm must handle such cases effectively.

5.	 Cluster merging. As data evolves, clusters may need to 
merge when they become similar.

6.	 Distinguishing outliers. The algorithm must differenti-
ate between outlier samples and full clusters.

We propose the following algorithm for evolving time 
series clustering: 

1.	 Use the first sample to initialize the first cluster.
2.	 Estimate the noise level of the first sample and use it to 

initialize the variance band of the first cluster.
3.	 For each subsequent sample: 

(a)	 Compute the distances between the new sample 
and all clusters.

(b)	 If the distance to the closest established cluster is 
below a certain threshold, add the sample to the 
cluster.

(c)	 Update the PSV, PCV, and PIV vectors of the clus-
ter upon adding the sample.

(d)	 If no established clusters are close enough, check 
the outlier cluster distances. If any distances are 
below a threshold, add the sample to the outlier 
cluster, updating PSV, PCV, and PIV.

(e)	 If the sample is not added to any cluster, establish 
a new outlier cluster with the sample, initializing 
new PSV, PCV, and PIV vectors. Initialize PIV 
with the estimated noise level of the sample.

(f)	 After adding the sample, check the cluster for 
merging with other clusters. Merging can occur 
between any cluster types (established or outlier).

(g)	 Check clusters for changes in established-outlier 
status. Convert an established cluster to an out-
lier cluster if it has too few samples. Convert an 
outlier cluster to an established cluster if it has 
enough samples. The threshold is set as a percent-
age of the total processed samples, determined by 
domain knowledge.

3.4.1 � iERAL‑based distance calculation

As with most machine learning applications, the choice 
of the distance function is critical. In time series analysis, 
the Euclidean distance has been shown to be problematic 
(Fu 2011; Aghabozorgi et al. 2015). Elastic and edit-based 
distance measures, such as DTW and TWED, have been 
proposed. However, as described in Sect. 2, these methods 
have their own limitations. The ERAL score provides a 
non-elastic distance measure.

Having expanded ERAL with the variance band, we 
propose the use of an interval-based distance function. A 
simple interval-based distance can be computed as the pro-
portion of the sample that falls outside the variance band 
of the prototype. This proportion can then be corrected 
by the overlap factor, similar to the distance presented in 
Stržinar et al. (2024).

In summary, the distance function is calculated as:

Here, C is the cluster, and x is the sample. r represents the 
PSV of C, and b represents the PIV of C.

3.4.2 � Evolving clustering demonstration

In order to demonstrate the evolving clustering procedure, 
Fig. 7 provides a demonstration of clustering as 14 time 
series are sequentially processed by the algorithm. Each 

(35)d(x,C) = 1 −

∑imin+�+N

i=imin+�
�(ri − bi ≤ xi ≤ ri + bi)

n
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column corresponds to a single input time series and its 
effect on the current clustering state.

The top row shows the incoming time series. The evolv-
ing clustering algorithm processes them one at a time. The 
first time series is used to initialize the first cluster (see 
central part of the figure). The noise estimate as calculated 
using Eq. (29) is used to initialize the PIV interval band. 
The total number of clusters is 1 (bottom plot of figure).

The second time series is processed (Fig. 7, second 
column) by computing the distance to the existing cluster 
(second row). The distance is too high (red bar), and a 
new cluster is initialized. Again, the PIV interval band is 
initialized by Eq. (29).

The third time series also initializes a new cluster, how-
ever, the fourth time series is close enough to the prototype 
of the third cluster that Cluster 3 is updated (green bar in 
second row).

The process is repeated for all incoming time series.
The second row of Fig.  7 visualizes the distances 

between the current sample and all existing clusters. A 
green bar indicates assignment to the closest cluster. If all 
the bars are red, the distance to the closest cluster exceeds 
the threshold, and a new cluster is created.

The central matrix of the demonstrative figure shows 
the temporal evolution of up to five clusters, with each 
cluster visualized using its current prototype (line) and 
the surrounding interval band (shaded area). Clusters are 
updated when a new sample is added, or remain unchanged 
otherwise.

The bottom plot tracks the total number of clusters over 
time, helping to highlight cluster initialization and merging 
behavior.

Fig. 7   Demonstration of evolv-
ing clustering for 14 time series 
passed to the algorithm. In total 
5 clusters are initialized. Each 
column represents the process-
ing of a single time series. 
First row plots the incoming 
samples. Second row depicts 
the distances between sample 
and all clusters. The central part 
demonstrates the evolution of 
the 5 clusters. Plot at the bot-
tom shows progression of the 
number of clusters

Fig. 8   Comparison of DBA, SBD, ERAL, and iERAL
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4 � Experiment and results

4.1 � Comparison of alignment and averaging 
methods

One of the contributions of this paper is iERAL, an align-
ment and averaging method. The performance of iERAL is 
illustrated in Fig. 8. The figure shows the prototypes gener-
ated by DBA, SBD, ERAL, and iERAL for six sets of time 
series corresponding to six classes of data from (Stržinar 
et al. 2024, 2024).

Analyzing DBA, we observe unwanted spikes and pla-
teaus in the prototypes. These artifacts, previously reported 
by several researchers (Liu et al. 2023; Rasines et al. 2023; 
Morel et al. 2018; Liu et al. 2019; Stržinar et al. 2024), can 
be attributed to the use of DTW as the underlying alignment 
method.

The rightmost column of Fig. 8 shows SBD prototypes. 
Since these are not based on DTW, the plateaus and spikes 
observed in DBA are absent. However, some scaling issues 
and prototype shortening are evident. Compared to the other 
three methods, SBD prototypes appear too short relative to 
the underlying data. Although the zero-mean tendency at the 
edges, as reported in (Stržinar et al. 2024), is not observed in 
this dataset, it is likely to occur in others given the proper-
ties of SBD.

Comparing ERAL and iERAL, we observe similar pro-
totypes; however, iERAL better captures the shape at the 
edges. Given the excellent results of ERAL in Stržinar et al. 
(2024), iERAL demonstrates comparable performance, 
achieved in a single pass of the data. Additionally, the 

inclusion of the standard deviation band adds significant 
value by capturing data variability.

The confidence band in iERAL is observed to vary in 
width, confirming the hypothesis that the standard deviation 
of the data is not constant throughout the time series. This 
variability underscores the need for a mechanism to accu-
rately capture and represent this characteristic.

4.2 � Evolving clustering of unlabeled industrial data

The ultimate goal of this work is the unsupervised cluster-
ing of a stream of otherwise unlabeled sensor readings from 
industrial machines. By segmenting the data in the vicinity 

Fig. 9   Evolving clustering of 
unlabeled industrial data

Fig. 10   Evolving clustering of unlabeled industrial data–progression 
of the number of clusters
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of large drops in the (pressure) signal, a sequence of time 
series segments is obtained. These segments are passed 
to iERAL, and the results are demonstrated in Fig. 9. The 
figure shows the final established clusters–clusters contain-
ing more than 0.5% of all samples passed to the clustering 
algorithm.

Observing the established clusters in Fig. 9, we notice 
that the clusters are well-separated. Each cluster represents 
a distinct shape, and the shapes are consistent within each 
cluster. The confidence band clearly envelopes the data with-
out being too wide to obscure the shape. The good sepa-
ration of clusters indicates an effective choice of distance 
function–the interval-based approach described in Eq. (35).

In Fig. 10, we observe the progression of the number of 
clusters as the data is processed. Established clusters (those 
accounting for more than 0.5% of past samples at a given 
time) are shown in orange, while outlier clusters are shown 
in blue.

The number of established clusters (16) stabilizes early, 
after around 400 processed samples. Subsequently, only 
minor additions, promotions (outlier to established), demo-
tions (established to outlier), and merges are observed. The 
number of outlier clusters is high, but analysis of Fig. 10 
shows that this number remained relatively stable during the 
first part of the experiment. After processing roughly 900 
samples, the number of outlier clusters begins to increase, 
likely due to the algorithm detecting new patterns in the 
data. These results are consistent with prior studies on this 
dataset (Stržinar et al. 2024). This behavior suggests the 
algorithm’s capability to detect anomalous machine behav-
ior, marking new patterns as outliers.

4.3 � Comparison of evolving clustering results 
and ground truth labels

The industrial dataset used in the previous experiment is also 
available in a pre-segmented and labeled format. This ena-
bles a comparison of the unsupervised clustering algorithm 

proposed in this paper with ground truth labels. The results 
are shown in the confusion matrix in Fig. 11.1

The confusion matrix reveals a strong diagonal, indicat-
ing good performance of the clustering algorithm. The clus-
ters identified correlate strongly with the actual class labels. 
The clustering algorithm has also detected several outlier 
clusters, which explains why the number of columns in the 
confusion matrix is greater than the number of rows (cor-
responding to ground truth labels). As expected, the outlier 
clusters are mostly empty.

4.4 � Comparison to other time series clustering 
algorithms

To further evaluate the effectiveness of our proposed algo-
rithm, we conducted a comparative study against several 
established time series clustering techniques. We compare 
the proposed algorithm to K-Shape Paparrizos and Gravano  
(2015), K-Means and K-Medoids clustering. We include 
results using both Dynamic Time Warping (DTW) Berndt 
and Clifford (1994) and Move-Split-Merge (MSM) Stefan 
et al. (2012) distances, as suggested in Holder et al. (2024). 
Additionally, we include DBSCAN Schubert et al. (2017) 
with DTW in our comparison. A Python library for time 
series analysis, the AEON toolkit (AEON  2025), also 
includes two additional clustering algorithms, which we 
include in our comparison: CLARA and CLARANS (Ng 
and Han 2002). We also include K-ShapeStream Bariya et al. 
(2021) as the streaming implementation of K-Shape.

The experiments were performed on a labeled industrial 
dataset, which enabled quantitative evaluation of cluster-
ing quality using the Adjusted Rand Index (ARI) and the 
V-score.

The Adjusted Rand Index (ARI) is a measure of simi-
larity between two data clusterings, adjusted for chance. It 

Fig. 11   Comparison of evolving 
clustering results and ground 
truth labels

1  The predicted labels in Fig. 11 have been permuted using the Hun-
garian algorithm to obtain the optimal diagonal. Permuting class 
labels in an unsupervised learning algorithm does not affect the valid-
ity of the results.
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evaluates how well the predicted clustering agrees with the 
ground truth labels. The ARI ranges from -1 to 1, where 1 
indicates perfect agreement, 0 indicates random labeling, 
and negative values suggest worse than random agreement.

The V-score is an entropy-based external cluster evalua-
tion metric. It is the harmonic mean of homogeneity (each 
cluster contains only members of a single class) and com-
pleteness (all members of a given class are assigned to the 
same cluster). It is defined as:

Both homogeneity and completeness are derived from con-
ditional entropy calculations and lie in the range [0, 1], 
hence V ∈ [0, 1] . Higher values indicate better clustering 
performance.

A summary of the results is presented in Table 2.
Our algorithm outperformed the other tested methods 

in both V-score and ARI, even though it was not provided 
with prior knowledge of the true number of clusters. In 
contrast, the competing algorithms were all initialized 
with the true number of clusters. Furthermore, our algo-
rithm operates in a single-pass fashion, a significant 
advantage for streaming data applications, whereas the 
others, with the exception of K-ShapeStream, are inher-
ently batch algorithms. K-ShapeStream was run in micro-
batch mode with batches of 30 samples.

This combination of strong performance and practical 
suitability for evolving data streams underlines the value 
of our algorithm in real-world industrial settings, where 
prior knowledge of the number of clusters is rarely avail-
able and online processing is often required.

V = 2 ⋅
homogeneity ⋅ completeness

homogeneity + completeness

5 � Discussion

The results shown in Sect. 4 demonstrate the ability of 
iERAL so produce meaningful cluster prototypes. In com-
bination with the proposed clustering algorithm clusters 
corresponding to the underlying process steps are found.

Due to the single-pass nature of iERAL, it is much 
faster when applied to industrial applications where data 
is streamed and clusters must be updated in real time. 
As shown by the computational complexity analysis, any 
batch-processing solution is not suitable. iERAL provides 
a suitable alternative.

The prototypes generated by iERAL are similar to 
those by ERAL. Both methods outperform DTW-based 
methods such as DBA by not introducing spike and pla-
teau artifacts. This is especially important in industrial 
applications where slight changes in the shape of the 
underlying signal can indicate important faults which 
must be diagnosed.

By adding the interval band, iERAL captures not only 
the shape but also the variance of the underlying data, 
adding a second dimension to any downstream analysis 
task.

6 � Conclusion and future work

The key contributions of our paper are twofold: 1) the 
introduction of the variance band to the ERAL framework 
through iERAL, 2) and the evolving time series clustering 
algorithm.

The proposed iERAL method enables single-pass cal-
culation the prototype of a set of time series. The addition 
of the variance band, enables additional insights into the 
data and improved cluster interpretability.

iERAL combined with the proposed evolving time 
series clustering algorithm, enables the analysis of evolv-
ing data streams in real time. Unlike previous methods, 
the generated prototypes avoid common artifacts such as 
spikes and plateaus. The shape of streaming data is pre-
served by iERAL and the clusters generated by the evolv-
ing clustering algorithm correspond well to the underlying 
industrial process.

Our experiments have demonstrated how iERAL and the 
clustering algorithm can capture the patterns in streamed 
industrial data. The found clusters match the underlying 
industrial process steps.

Given the promising results presented in this paper, fur-
ther industrial datasets should be obtained for additional 
evaluation of the proposed methods.

Since the distance function is a critical part of any time 
series analysis, the work presented here could be expanded 

Table 2   Comparison of time series clustering algorithms on the 
labeled industrial dataset

Algorithm Distance V-score ARI

Our solution ERAL 0.67 0.39
K-Shape SBD 0.42 0.12
K-ShapeStream SBD 0.44 0.11
K-Means DTW 0.50 0.20
K-Means MSM 0.55 0.23
K-Medoids DTW 0.47 0.17
K-Medoids MSM 0.52 0.23
DBSCAN DTW 0.64 0.22
CLARA​ DTW 0.31 0.06
CLARANS DTW 0.48 0.17
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by further research into interval-based and probabilistic dis-
tance measures.

A noise estimation

In this section we examine the noise estimation proposal 
used in Sect. 3.3.2 to initialize the Prototype Inverval Vector.

Let the time series x = {x1, x2,… , xn} be modeled as:

where si represents the smooth underlying signal, and ni rep-
resents zero-mean, independent, and identically distributed 
(i.i.d.) noise with E[ni] = 0 and Var(ni) = �2.

The first-order difference of the time series is defined as:

Substituting the model xi = si + ni , we have:

where Δsi = si+1 − si and Δni = ni+1 − ni.
The variance of Δxi is given by:

Since the noise ni is zero-mean ( E[ni] = 0 ) and the smooth 
signal is assumed to vary around a local mean ( E[Δsi] = 0 ), 
we have:

Thus:

Substituting Δxi = Δsi + Δni , we expand:

Using the linearity of expectation:

Assuming the smooth signal Δsi and noise Δni are independ-
ent, we have:

This reduces the variance expression to:

For the noise term Δni = ni+1 − ni:

(36)xi = si + ni

(37)Δxi = xi+1 − xi

(38)Δxi = (si+1 − si) + (ni+1 − ni)

(39)Δxi = Δsi + Δni

(40)Var(Δxi) = E[(Δxi − E[Δxi])
2]

(41)E[Δxi] = E[Δsi] + E[Δni] = 0

(42)Var(Δxi) = E[(Δxi)
2]

(43)Var(Δxi) = E[(Δsi + Δni)
2]

(44)
E[(Δsi + Δni)

2] = E[(Δsi)
2] + 2E[ΔsiΔni] + E[(Δni)

2]

(45)E[ΔsiΔni] = 0

(46)Var(Δxi) = E[(Δsi)
2] + E[(Δni)

2]

Expanding the square:

Since ni are i.i.d., E[n2
i+1

] = E[n2
i
] = �2 , and E[ni+1ni] = 0 , 

we get:

The term E[(Δsi)2] represents the variance of the smooth 
signal differences. For a sufficiently smooth signal, this vari-
ance is small, and we approximate:

Substituting back, we have:

Taking the square root to compute the standard deviation:

Rearranging for � , the noise level is:

Thus, the standard deviation of the noise can be estimated 
from the first-order differences of the time series as:
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